Actual source code: test29.c
slepc-3.17.2 2022-08-09
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Illustrates the computation of left eigenvectors for generalized eigenproblems.\n\n"
12: "The command line options are:\n"
13: " -f1 <filename> -f2 <filename>, PETSc binary files containing A and B\n\n";
15: #include <slepceps.h>
17: /*
18: User-defined routines
19: */
20: PetscErrorCode ComputeResidualNorm(Mat,Mat,PetscBool,PetscScalar,PetscScalar,Vec,Vec,Vec*,PetscReal*);
22: int main(int argc,char **argv)
23: {
24: Mat A,B;
25: EPS eps;
26: EPSType type;
27: PetscInt i,nconv;
28: PetscBool twosided,flg;
29: PetscReal nrmr,nrml=0.0,re,im,lev;
30: PetscScalar *kr,*ki;
31: Vec t,*xr,*xi,*yr,*yi,*z;
32: char filename[PETSC_MAX_PATH_LEN];
33: PetscViewer viewer;
35: SlepcInitialize(&argc,&argv,(char*)0,help);
37: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
38: Load the matrices that define the eigensystem, Ax=kBx
39: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
41: PetscPrintf(PETSC_COMM_WORLD,"\nGeneralized eigenproblem stored in file.\n\n");
42: PetscOptionsGetString(NULL,NULL,"-f1",filename,sizeof(filename),&flg);
45: #if defined(PETSC_USE_COMPLEX)
46: PetscPrintf(PETSC_COMM_WORLD," Reading COMPLEX matrices from binary files...\n");
47: #else
48: PetscPrintf(PETSC_COMM_WORLD," Reading REAL matrices from binary files...\n");
49: #endif
50: PetscViewerBinaryOpen(PETSC_COMM_WORLD,filename,FILE_MODE_READ,&viewer);
51: MatCreate(PETSC_COMM_WORLD,&A);
52: MatSetFromOptions(A);
53: MatLoad(A,viewer);
54: PetscViewerDestroy(&viewer);
56: PetscOptionsGetString(NULL,NULL,"-f2",filename,sizeof(filename),&flg);
57: if (flg) {
58: PetscViewerBinaryOpen(PETSC_COMM_WORLD,filename,FILE_MODE_READ,&viewer);
59: MatCreate(PETSC_COMM_WORLD,&B);
60: MatSetFromOptions(B);
61: MatLoad(B,viewer);
62: PetscViewerDestroy(&viewer);
63: } else {
64: PetscPrintf(PETSC_COMM_WORLD," Matrix B was not provided, setting B=I\n\n");
65: B = NULL;
66: }
67: MatCreateVecs(A,NULL,&t);
69: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
70: Create the eigensolver and set various options
71: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
73: EPSCreate(PETSC_COMM_WORLD,&eps);
74: EPSSetOperators(eps,A,B);
76: /* use a two-sided algorithm to compute left eigenvectors as well */
77: EPSSetTwoSided(eps,PETSC_TRUE);
79: /* allow user to change settings at run time */
80: EPSSetFromOptions(eps);
81: EPSGetTwoSided(eps,&twosided);
83: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
84: Solve the eigensystem
85: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
87: EPSSolve(eps);
89: /*
90: Optional: Get some information from the solver and display it
91: */
92: EPSGetType(eps,&type);
93: PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type);
95: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
96: Display solution and clean up
97: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
99: /*
100: Get number of converged approximate eigenpairs
101: */
102: EPSGetConverged(eps,&nconv);
103: PetscPrintf(PETSC_COMM_WORLD," Number of converged eigenpairs: %" PetscInt_FMT "\n\n",nconv);
104: PetscMalloc2(nconv,&kr,nconv,&ki);
105: VecDuplicateVecs(t,3,&z);
106: VecDuplicateVecs(t,nconv,&xr);
107: VecDuplicateVecs(t,nconv,&xi);
108: if (twosided) {
109: VecDuplicateVecs(t,nconv,&yr);
110: VecDuplicateVecs(t,nconv,&yi);
111: }
113: if (nconv>0) {
114: /*
115: Display eigenvalues and relative errors
116: */
117: PetscCall(PetscPrintf(PETSC_COMM_WORLD,
118: " k ||Ax-kBx|| ||y'A-y'Bk||\n"
119: " ---------------- ------------------ ------------------\n"));
121: for (i=0;i<nconv;i++) {
122: /*
123: Get converged eigenpairs: i-th eigenvalue is stored in kr (real part) and
124: ki (imaginary part)
125: */
126: EPSGetEigenpair(eps,i,&kr[i],&ki[i],xr[i],xi[i]);
127: if (twosided) EPSGetLeftEigenvector(eps,i,yr[i],yi[i]);
128: /*
129: Compute the residual norms associated to each eigenpair
130: */
131: ComputeResidualNorm(A,B,PETSC_FALSE,kr[i],ki[i],xr[i],xi[i],z,&nrmr);
132: if (twosided) ComputeResidualNorm(A,B,PETSC_TRUE,kr[i],ki[i],yr[i],yi[i],z,&nrml);
134: #if defined(PETSC_USE_COMPLEX)
135: re = PetscRealPart(kr[i]);
136: im = PetscImaginaryPart(kr[i]);
137: #else
138: re = kr[i];
139: im = ki[i];
140: #endif
141: if (im!=0.0) PetscPrintf(PETSC_COMM_WORLD," %8f%+8fi %12g %12g\n",(double)re,(double)im,(double)nrmr,(double)nrml);
142: else PetscPrintf(PETSC_COMM_WORLD," %12f %12g %12g\n",(double)re,(double)nrmr,(double)nrml);
143: }
144: PetscPrintf(PETSC_COMM_WORLD,"\n");
145: /*
146: Check bi-orthogonality of eigenvectors
147: */
148: if (twosided) {
149: VecCheckOrthogonality(xr,nconv,yr,nconv,B,NULL,&lev);
150: if (lev<100*PETSC_MACHINE_EPSILON) PetscPrintf(PETSC_COMM_WORLD," Level of bi-orthogonality of eigenvectors < 100*eps\n\n");
151: else PetscPrintf(PETSC_COMM_WORLD," Level of bi-orthogonality of eigenvectors: %g\n\n",(double)lev);
152: }
153: }
155: EPSDestroy(&eps);
156: MatDestroy(&A);
157: MatDestroy(&B);
158: VecDestroy(&t);
159: PetscFree2(kr,ki);
160: VecDestroyVecs(3,&z);
161: VecDestroyVecs(nconv,&xr);
162: VecDestroyVecs(nconv,&xi);
163: if (twosided) {
164: VecDestroyVecs(nconv,&yr);
165: VecDestroyVecs(nconv,&yi);
166: }
167: SlepcFinalize();
168: return 0;
169: }
171: /*
172: ComputeResidualNorm - Computes the norm of the residual vector
173: associated with an eigenpair.
175: Input Parameters:
176: trans - whether A' must be used instead of A
177: kr,ki - eigenvalue
178: xr,xi - eigenvector
179: z - three work vectors (the second one not referenced in complex scalars)
180: */
181: PetscErrorCode ComputeResidualNorm(Mat A,Mat B,PetscBool trans,PetscScalar kr,PetscScalar ki,Vec xr,Vec xi,Vec *z,PetscReal *norm)
182: {
183: Vec u,w=NULL;
184: PetscScalar alpha;
185: #if !defined(PETSC_USE_COMPLEX)
186: Vec v;
187: PetscReal ni,nr;
188: #endif
189: PetscErrorCode (*matmult)(Mat,Vec,Vec) = trans? MatMultHermitianTranspose: MatMult;
191: u = z[0];
192: if (B) w = z[2];
194: #if !defined(PETSC_USE_COMPLEX)
195: v = z[1];
196: if (ki == 0 || PetscAbsScalar(ki) < PetscAbsScalar(kr*PETSC_MACHINE_EPSILON)) {
197: #endif
198: (*matmult)(A,xr,u); /* u=A*x */
199: if (PetscAbsScalar(kr) > PETSC_MACHINE_EPSILON) {
200: if (B) (*matmult)(B,xr,w); /* w=B*x */
201: else w = xr;
202: alpha = trans? -PetscConj(kr): -kr;
203: VecAXPY(u,alpha,w); /* u=A*x-k*B*x */
204: }
205: VecNorm(u,NORM_2,norm);
206: #if !defined(PETSC_USE_COMPLEX)
207: } else {
208: (*matmult)(A,xr,u); /* u=A*xr */
209: if (SlepcAbsEigenvalue(kr,ki) > PETSC_MACHINE_EPSILON) {
210: if (B) (*matmult)(B,xr,v); /* v=B*xr */
211: else VecCopy(xr,v);
212: VecAXPY(u,-kr,v); /* u=A*xr-kr*B*xr */
213: if (B) (*matmult)(B,xi,w); /* w=B*xi */
214: else w = xi;
215: VecAXPY(u,trans?-ki:ki,w); /* u=A*xr-kr*B*xr+ki*B*xi */
216: }
217: VecNorm(u,NORM_2,&nr);
218: (*matmult)(A,xi,u); /* u=A*xi */
219: if (SlepcAbsEigenvalue(kr,ki) > PETSC_MACHINE_EPSILON) {
220: VecAXPY(u,-kr,w); /* u=A*xi-kr*B*xi */
221: VecAXPY(u,trans?ki:-ki,v); /* u=A*xi-kr*B*xi-ki*B*xr */
222: }
223: VecNorm(u,NORM_2,&ni);
224: *norm = SlepcAbsEigenvalue(nr,ni);
225: }
226: #endif
227: PetscFunctionReturn(0);
228: }
230: /*TEST
232: testset:
233: args: -f1 ${SLEPC_DIR}/share/slepc/datafiles/matrices/bfw62a.petsc -f2 ${SLEPC_DIR}/share/slepc/datafiles/matrices/bfw62b.petsc -eps_nev 4 -st_type sinvert -eps_target -190000
234: filter: grep -v "method" | sed -e "s/[+-]0\.0*i//g" | sed -e "s/[0-9]\.[0-9]*e[+-]\([0-9]*\)/removed/g"
235: requires: double !complex !defined(PETSC_USE_64BIT_INDICES)
236: test:
237: suffix: 1
238: test:
239: suffix: 1_rqi
240: args: -eps_type power -eps_power_shift_type rayleigh -eps_nev 2 -eps_target -2000
241: test:
242: suffix: 1_rqi_singular
243: args: -eps_type power -eps_power_shift_type rayleigh -eps_nev 1 -eps_target -195500
245: test:
246: suffix: 2
247: args: -f1 ${DATAFILESPATH}/matrices/complex/mhd1280a.petsc -f2 ${DATAFILESPATH}/matrices/complex/mhd1280b.petsc -eps_nev 6 -eps_tol 1e-11
248: filter: sed -e "s/-892/+892/" | sed -e "s/-759/+759/" | sed -e "s/-674/+674/" | sed -e "s/[0-9]\.[0-9]*e[+-]\([0-9]*\)/removed/g"
249: requires: double complex datafilespath !defined(PETSC_USE_64BIT_INDICES)
250: timeoutfactor: 2
252: TEST*/