Actual source code: test16.c
slepc-3.17.2 2022-08-09
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Tests multiple calls to SVDSolve with equal matrix size (GSVD).\n\n"
12: "The command line options are:\n"
13: " -m <m>, where <m> = number of rows of A.\n"
14: " -n <n>, where <n> = number of columns of A.\n"
15: " -p <p>, where <p> = number of rows of B.\n\n";
17: #include <slepcsvd.h>
19: /*
20: This example solves two GSVD problems for the bidiagonal matrices
22: | 1 2 | | 1 |
23: | 1 2 | | 2 1 |
24: | 1 2 | | 2 1 |
25: A1 = | . . | A2 = | . . |
26: | . . | | . . |
27: | 1 2 | | 2 1 |
28: | 1 2 | | 2 1 |
30: with B = tril(ones(p,n))
31: */
33: int main(int argc,char **argv)
34: {
35: Mat A1,A2,B;
36: SVD svd;
37: PetscInt m=15,n=20,p=21,Istart,Iend,i,j,d,col[2];
38: PetscScalar valsa[] = { 1, 2 }, valsb[] = { 2, 1 };
40: SlepcInitialize(&argc,&argv,(char*)0,help);
41: PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL);
42: PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
43: PetscOptionsGetInt(NULL,NULL,"-p",&p,NULL);
44: PetscPrintf(PETSC_COMM_WORLD,"\nGeneralized singular value decomposition, (%" PetscInt_FMT "+%" PetscInt_FMT ")x%" PetscInt_FMT "\n\n",m,p,n);
46: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
47: Generate the matrices
48: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
50: MatCreate(PETSC_COMM_WORLD,&A1);
51: MatSetSizes(A1,PETSC_DECIDE,PETSC_DECIDE,m,n);
52: MatSetFromOptions(A1);
53: MatSetUp(A1);
54: MatGetOwnershipRange(A1,&Istart,&Iend);
55: for (i=Istart;i<Iend;i++) {
56: col[0]=i; col[1]=i+1;
57: if (i<n-1) MatSetValues(A1,1,&i,2,col,valsa,INSERT_VALUES);
58: else if (i==n-1) MatSetValue(A1,i,col[0],valsa[0],INSERT_VALUES);
59: }
60: MatAssemblyBegin(A1,MAT_FINAL_ASSEMBLY);
61: MatAssemblyEnd(A1,MAT_FINAL_ASSEMBLY);
63: MatCreate(PETSC_COMM_WORLD,&A2);
64: MatSetSizes(A2,PETSC_DECIDE,PETSC_DECIDE,m,n);
65: MatSetFromOptions(A2);
66: MatSetUp(A2);
67: MatGetOwnershipRange(A2,&Istart,&Iend);
68: for (i=Istart;i<Iend;i++) {
69: col[0]=i-1; col[1]=i;
70: if (i==0) MatSetValue(A2,i,col[1],valsb[1],INSERT_VALUES);
71: else if (i<n) MatSetValues(A2,1,&i,2,col,valsb,INSERT_VALUES);
72: else if (i==n) MatSetValue(A2,i,col[0],valsb[0],INSERT_VALUES);
73: }
74: MatAssemblyBegin(A2,MAT_FINAL_ASSEMBLY);
75: MatAssemblyEnd(A2,MAT_FINAL_ASSEMBLY);
77: MatCreate(PETSC_COMM_WORLD,&B);
78: MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,p,n);
79: MatSetFromOptions(B);
80: MatSetUp(B);
81: MatGetOwnershipRange(B,&Istart,&Iend);
82: d = PetscMax(0,n-p);
83: for (i=Istart;i<Iend;i++) {
84: for (j=0;j<=PetscMin(i,n-1);j++) MatSetValue(B,i,j+d,1.0,INSERT_VALUES);
85: }
86: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
87: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
89: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
90: Create the singular value solver, set options and solve
91: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
93: SVDCreate(PETSC_COMM_WORLD,&svd);
94: SVDSetOperators(svd,A1,B);
95: SVDSetFromOptions(svd);
96: SVDSolve(svd);
97: SVDErrorView(svd,SVD_ERROR_NORM,NULL);
99: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
100: Solve second problem
101: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
103: SVDSetOperators(svd,A2,B);
104: SVDSolve(svd);
105: SVDErrorView(svd,SVD_ERROR_NORM,NULL);
107: /* Free work space */
108: SVDDestroy(&svd);
109: MatDestroy(&A1);
110: MatDestroy(&A2);
111: MatDestroy(&B);
112: SlepcFinalize();
113: return 0;
114: }
116: /*TEST
118: testset:
119: args: -svd_nsv 3
120: requires: !single
121: output_file: output/test16_1.out
122: test:
123: suffix: 1_lapack
124: args: -svd_type lapack
125: test:
126: suffix: 1_cross
127: args: -svd_type cross -svd_cross_explicitmatrix {{0 1}}
128: test:
129: suffix: 1_cyclic
130: args: -svd_type cyclic -svd_cyclic_explicitmatrix {{0 1}}
131: test:
132: suffix: 1_trlanczos
133: args: -svd_type trlanczos -svd_trlanczos_gbidiag {{single upper lower}}
134: test:
135: suffix: 1_trlanczos_par
136: nsize: 2
137: args: -svd_type trlanczos -ds_parallel {{redundant synchronized}}
139: TEST*/