
Tntdb

Author: Tommi Mäkitalo

Introduction..1
Connecting..1
Execute query...2
Selecting data..2
Prepared statements..3
Working with cursors...4
Transactions..5
Using dates and times...6
Using own types...6
Using serial columns..8
Connectionpool...8
Statementcache...9

Introduction
Tntdb is a library for simple database access. There are 2 layers for access – a database independent
layer and a database driver.

The database independent layer offers easy to use methods for working with the database and also
greatly simplifies resource-management. The classes hold reference-counted pointers to the actual
implementation. They are copyable and assignable. The user can use the classes just like simple
values. The resources they reference are freed, when the last reference is deleted. This happens
normally just by leaving the scope. There is normally no reason to instantiate them dynamically on
the heap.

The driver-layer contains the actual implementation, which does the work. These classes are
database-dependent. The user normally doesn't need to deal with this.

Each class is defined in a header <tntdb/Classname.h>.

Error handling is always done with exceptions. A class tntdb::Error is the base for all exceptions. It
is derived from std::runtime_error.

Connecting
A connection is represented by the class tntdb::Connection. Tntdb offers a simple function, which
connects to the database: tntdb::connect. This expects a parameter of type std::string, which is the
database-url. The database-url consists of the driver name and a database dependent part divided by
a colon.

Example:

#include <tntdb/connection.h>
#include <tntdb/connect.h>
int main(int argc, char* argv)
{
 tntdb::Connection conn = tntdb::connect(„sqlite:mydb.db“);
}

The example above loads the sqlite-driver-library and opens a connection to the databasefile
„mydb.db“. At the end of the program the class tntdb::Connection goes out of scope, which closes
the connection automatically.

When the database could not be opened a exception is thrown. In the above example it is
unhandled, which makes the program to abort. This is not so nice, so we add exceptionhandling in
the second example:

#include <tntdb/connection.h>
#include <tntdb/connect.h>
int main(int argc, char* argv)
{
 try
 {
 tntdb::Connection conn = tntdb::connect(„postgresql:dbname=db“);
 }
 catch (const std::exception& e)
 {
 std::cerr << e.what() << std::endl;
 }
}

This is a complete example, which just checks, if the database is accessible.

Let's look a little deeper into the driver dependent part.

The Postgresql driver

The part after the prefix “postgresql:” is passed directly to the C-API function PQconnectdb. You
can look into the C-API documentation for details. Here is a simple example:

tntdb::Connection conn =
 tntdb::connect("postgresql:dbname=DS2 user=web password=web");

The Sqlite driver

The sqlite driver supports only sqlite3. No support for sqlite2 is available. The part after the prefix
“sqlite:” is used as a file name for the database. No additional parameters are needed.

Here is an example:

tntdb::Connection conn = tntdb::connect("sqlite:mydatabase.db");

The mysql driver

The part after the prefix “mysql:” is split into the parameters needed for mysql_real_connect. The
string is interpreted as a list of parameters separated by semicolon. Each parameter is a name value
pair separated by '='. The keys are post, flags, app, host, user, passwd, db and unix_socket. For
passwd the word password is also accepted. Db may be replaced with dbname or database. All other
keys throw an error. The value may be enclosed in ' or ". The backslash character disables any
special meaning of the next character.

Ok – this is the definition. It is much easier to understand, if you see an example:

tntdb::Connection conn =
 tntdb::connect("mysql:db=DS2;user=web;passwd=web");

The oracle driver

The oracle driver is not compiled by default when tntdb is compiled, since it is not open source.
You have to explicitly enable it with the switch to configure --with-oracle.

From the string after the prefix “oracle:” the username and password is exctracted. They must be
passed semicolon separated “user=username” and “passwd=password”. The rest of the string is
passed to the OCI function OCIServerAttach. Here is an example:

tntdb::Connection conn =
 tntdb::connect("oracle:XE;user=hr;passwd=hr");

Execute query
To execute a query without selecting data tntdb::Connection has a method execute. It expects a
std::string with a sql-statement, which does not return data. It returns the number of affected rows.

Example:

#include <tntdb/connection.h>
#include <tntdb/connect.h>
int main(int argc, char* argv)
{
 try
 {
 tntdb::Connection conn = tntdb::connect(„postgresql:dbname=db“);
 conn.execute(
 „create table t1(col1 int not null primary key,“
 „ col2 int not null)“);
 conn.execute(„insert into t1 values(1, 5)“);
 unsigned n = conn.execute(„update t1 set col1 = col1 + 1“);
 std::cout << n << „rows updated“ << std::endl;
 }
 catch (const std::exception& e)
 {
 std::cerr << e.what() << std::endl;
 }
}

Selecting data
A database is not just for storing data, but it also need to fetch the data. Tntdb offers several ways to
read the data from the database. The most general is the method tntdb::Connection::select(), which
expects a query and returns a object of class tntdb::Result.

tntdb::Result is a collection of rows. Rows are represented by the class tntdb::Row and these rows
are also collections of type tntdb::Value. Both collections (Result and Row) can be accessed with a
iterator or through a index. The Value-class offers methods for returning the data in different types.
Tntdb does not tell, which type the column is. Value just does its best to convert the data to the
requested type. The User has to know, which data the column holds.

Often there are statements, which return exactly one row or only a single value. For convenience
tntdb::Connection offers the methods selectRow and selectValue. The former returns the first row
of a query and the latter the first value of the first row. Both throw a exception of type
tntdb::NotFound, if the query returns no rows at all.

A tntdb::Value has a get-template-method, which receives a reference to a variable, which is filled
by the actual value from the database. It also returns a boolean value, which indicates, if the value
was not null. In case the value was null, the method returns false and do not modify the passed
variable.

Example:

#include <tntdb/result.h>
#include <tntdb/row.h>
#include <tntdb/value.h>

void someFunc(tntdb::Connection conn)
{
 tntdb::Result result = conn.select(„select col1, col2, col3 from
table“);
 for (tntdb::Result::const_iterator it = result.begin();
 it != result.end(); ++it)
 {
 tntdb::Row row = *it;
 int a;
 std::string b;
 long c;
 bool cIsNotNull;
 row[0].get(a); // read column 0 into variable a
 row[1].get(b); // read column 1 into variable b
 cIsNotNull = row[2].get(c);
 std::cout << „col1=“ << a << „\tcol2=“ << b;
 if (cIsNotNull)
 std::cout << “\tcol3=” << c;
 else
 std::cout << “\tcol3 is null”;
 std::cout << std::endl;
 }
}

void someOtherFunc(tntdb::Connection conn)
{
 tntdb::Value v = conn.selectValue(„select count(*) from table“);
 std::cout << „The table 'table' has „ << v.getUnsigned()
 << „ rows“ << std::endl;
}

Prepared statements
Most of the time the user needs to parameterize the queries.

Because the query has the type std::string they can just be stringed together e.g. with
std::ostringstream. But this is not recommended. The disadvantage is, that the user has to deal with
special characters to avoid misinterpretation of data and especially avoid sql injection .

Prepared statements solve this by parsing the statement and getting the parameters separately. This
also offers sometimes significant performance-advantages, because the user can execute the same
statement multiple times with different parameters. The parsing can be done either at the client-side
or at the serve-side. Tntdb let the driver decide, if the database can parse the query and which
placeholders the database needs.

To create a prepared statement tntdb::Connection has a method prepare, which takes a query as a
std::string and returns a object of type tntdb::Statement. The query can contain parameters.
Parameters are named tokens in the query prefixed with a colon. A token can occur multiple times
in a query. The Statement-class has setter-methods to pass parameter-values with different types.

tntdb::Statement offers the same methods for databaseaccess as tntdb::Connect: execute, select,
selectRow and selectValue. They work exactly like the methods in tntdb::Connect.

Example:

#include <tntdb/statement.h>

void insData(tntdb::Connection conn)
{
 tntdb::Statement st = conn.prepare(
 „insert into table values (:v1, :v2)“);

 st.setInt(„v1“, 1) // the setters return *this, so they can be

 // chained easily
 .setString(„v2“, „hi“)
 .execute();

 st.setInt(„v1“, 2)
 .setString(„v2“, „world“)
 .execute();
}

You may also omit the explicit mention of the data type. There is a template method
tntdb::Statement::set, which determines the right type of the column from the type of the passed
parameter. If you later decide to change the type of a variable, you don't need to replace the method
used to pass the value to the database. Here is the same example as above using this template
method:

#include <tntdb/statement.h>

void insData(tntdb::Connection conn)
{
 tntdb::Statement st = conn.prepare(
 „insert into table values (:v1, :v2)“);

 st.set(„v1“, 1)
 .set(„v2“, „hi“)
 .execute();

 st.set(„v1“, 2)
 .set(„v2“, „world“)
 .execute();
}

Working with cursors
Connections and prepared statements offer the method select(), which fetches the result and offers
random-access to the data. Databases has often more data, than would fit into the memory of the
program. To deal with this, the innovators of databases has created cursors. They are like pointers to
a window in a resultset, but without holding (and transferring) all data in memory. Tntdb offers this
functionality with const_iterators in prepared statements. The class std::Statement::const_iterator
represents a database-cursor. It is a forward-only-iterator, which returns objects of type tntdb::Row,
when dereferenced.

The begin-method of tntdb::Statement starts a new iteration of a cursor.

Example

#include <tntdb/statement.h>

void printData(tntdb::Connection conn)
{
 tntdb::Statement st = conn.prepare(„select col1, col2 from table“);
 for (tntdb::Statement::const_iterator cur = st.begin();
 cur != st.end(); ++cur)
 {
 tntdb::Row row = *cur;
 std::string col1;
 std::string col2;
 row[0].get(col1);
 row[1].get(col2);
 std::cout << „col1=“ << col1 << „ col2=
 << col2 << std::endl;

 }
}

In the above example the memory-consumption is low even when the table has millions of rows.
When the data would have been fetched with a tntdb::Result all rows has to fit into the main-
memory.

The begin-method of tntdb::Statement has a optional parameter fetchsize of type unsigned, which is
passed to the driver. It may use it as a hint, how many rows it should fetch at once. The default
value is 100.

Using RowReader
When selecting data, mostly you read all values from the row. If you have many values, you have to
pass the ordinal value of each value separately, which may be tedious and error prone. To help it
and make the code more readable, tntdb has a helper class called tntdb::RowReader, which reads all
columns in turn. It has like tntdb::Value a method get, which receives a reference to a variable. But
this time it returns a reference to the tntdb::RowReader, to make it easy to chain calls. If you need
to know, if a value was null, you can pass a reference to a boolean variable, which tells, if the value
was not null.

Each call to the get method, increments the column counter of the tntdb::RowReader.

The tntdb::RowReader is normally not instantiated explicitly, but a method tntdb::Row::reader()
creates a instance of the class, with the initial column counter, which points to the first column
number 0. Optionally you can pass a different start value to the reader() method as a parameter, if
you want to skip some columns.

As an example lets rewrite the someFunc function from a previous example:

void someFunc(tntdb::Connection conn)
{
 tntdb::Result result = conn.select(„select col1, col2, col3 from
table“);
 for (tntdb::Result::const_iterator it = result.begin();
 it != result.end(); ++it)
 {
 tntdb::Row row = *it;
 int a;
 std::string b;
 long c;
 bool cIsNotNull;
 row.reader().get(a)
 .get(b)
 .get(c, cIsNotNull);

 std::cout << „col1=“ << a << „\tcol2=“ << b;
 if (cIsNotNull)
 std::cout << “\tcol3=” << c;
 else
 std::cout << “\tcol3 is null”;
 std::cout << std::endl;
 }
}

The same works also with a cursor. Lets look at the cursor example using the tntdb::RowReader:

void printData(tntdb::Connection conn)
{

 tntdb::Statement st = conn.prepare(„select col1, col2 from table“);
 for (tntdb::Statement::const_iterator cur = st.begin();
 cur != st.end(); ++cur)
 {
 std::string col1;
 std::string col2;
 cur->reader().get(col1)
 .get(col2);
 std::cout << „col1=“ << col1 << „ col2=
 << col2 << std::endl;
 }
}

It is just a matter of taste, which method you prefer or which method fits best in the current
situation. Tntdb tries to make it just as easy as possible.

Transactions
A database wouldn't be a database, if it does not offer transactions. tntdb::Connection has 3
methods to deal with it: beginTransaction, commitTransaction and rollbackTransaction. But this is
not the recommended way to deal with it. Tntdb has more to offer: tntdb::Transaction. This class
monitors the state of a transaction and closes the transaction automatically, when needed. This
offers exception-safety without the danger of open transactions.

tntdb::Transaction are instantiated (just like all tntdb-user-classes) as local variables. The
constructor starts a transaction and the destructor rolls the transaction back, if the transaction is not
explicitely committed. This guarantees, that the transaction is never left open (except when the
rollback fails, but this normally happens only, when the connection is broken anyway and there is
no way to do any harm to the database any more).

Example:

#include <tntdb/transaction.h>

void doSomeModifications(tntdb::Connection conn)
{
 tntdb::Transaction trans(conn);
 // do some modifications in the database here:
 conn.execute(...);
 conn.prepare(„...“).set(„col1“, value).execute();
 trans.commit();

} // no explicit rollback is needed. In case of an exception, the
 // transaction is rolled back automatically here

Using dates and times
Dates and times are a little special when it comes to databases. There is no standard syntax for
specifying dates and times. Therefore tntdb offers 3 helper classes. tntdb::Date can hold a date,
tntdb::Time a time and tntdb::Datetime both. They can be used just like built in types in tntdb. You
can set host variables and retrieve the value from results returned from the database.

The classes are simple helper classes which do not have any range checks or other knowledge of the
nature of the data. The constructor of tntdb::Date takes 3 parameters: the year, the month and the
day. The constructor takes 3 or 4 parameters: the hour, the minute, the second and a optional
millisecond. Tntdb::Datetime is created using 6 or 7 parameters. First the 3 parameters of the date
and then the 3 or 4 for the time.

There are also 2 static methods in each of the 3 classes localtime and gmtime, which create a object

with the current date or time.

Lets look for some examples:

void dateTimeDemos(tntdb::Connection conn)
{
 // insert dates and times into table:
 tntdb::Statement ins = conn.prepare(
 “insert into mytable (datecolumn, timecolumn, datetimecolumn)”
 “ values(:date, :time, :datetime)”);

 ins.set(“date”, tntdb::Date(2010, 2, 13))
 .set(“time”, tntdb::Time(23, 22, 30))
 .set(“datetime”, tntdb::Datetime(2010, 2, 13, 23, 22, 30))
 .execute();

 // insert the current dates and times into the table
 ins.set(“date”, tntdb::Date::localtime())
 .set(“time”, tntdb::Time::localtime())
 .set(“datetime”, tntdb::Datetime::localtime())
 .execute();

 // retrieve dates and times from a table:
 tntdb::Statement sel = conn.prepare(
 “select datecolumn, timecolumn, datetimecolumn”
 “ from mytable”);
 for (tntdb::Statement::const_iterator cur = st.begin();
 cur != st.end(); ++cur)
 {
 tntdb::Row row = *cur;
 tntdb::Date mydate;
 tntdb::Time mytime;
 tntdb::Datetime mydatetime;
 row[0].get(mydate);
 row[1].get(mytime);
 row[2].get(mydatetime);
 // now we have the data from the table in our variables
 std::cout << “date=” << mydate.getIso() << “\n”
 “time=” << mytime.getIso() << “\n”
 “datetime=” << mydatetime.getIso() << std::endl;
 }

Using own types
Tntdb offers also support for custom types. The setter and getter methods in tntdb are actually
templates, which uses 2 operators to actually map types to the methods. Lets design a own type,
which we would like to store in a database field. To make the example simple, we use a struct with
public member variables. Normally you should always make the member variables private or
protected and offer setter and getter methods:

struct Myclass
{
 int a;
 int b;
 Myclass() { } // default constructor is mostly good to have
 Myclass(int a_, int b_) // ctor to initialize both members
 : a(a_), b(b_) { }
};

We would like to write the class as a pair of numbers separated with ':' into a database field. So we
define a operator, which formats the structure properly:

void operator<< (tntdb::Hostvar& hv, const Myclass& myclass)
{

 std::ostringstream s;
 s << myclass.a << ':' << myclass.b;
 hv.set(s.str());
}

The operator creates a std::string with the content of the class and passes it to this special helper
class tntdb::Hostvar, which is defined in the header tntdb/statement.h. This is the only case, where
you will explicitly use the class.

To retrieve data from the database we need another operator:

bool operator>> (const tntdb::Value& value, Myclass& myclass)
{
 if (value.isNull())
 return false;
 std::string str;
 value.get(str);
 std::istringstream in(str);
 char ch;
 in >> myclass.a
 >> ch // skip the ':'
 >> myclass.b;
 return true;
}

That's all. Now we can use the class just like built ins:

void customTypeDemo(tntdb::Connection conn)
{
 // insert myclass into table:
 tntdb::Statement ins = conn.prepare(
 “insert into mytable (mycolumn)”
 “ values(:mycolumn)”);

 ins.set(“mycolumn”, Myclass(17, 45))
 .execute();

 // retrieve myclass from a table:
 tntdb::Statement sel = conn.prepare(
 “select mycolumn from mytable”);
 for (tntdb::Statement::const_iterator cur = st.begin();
 cur != st.end(); ++cur)
 {
 tntdb::Row row = *cur;
 Myclass myclass;
 row[0].get(myclass);
 // now we have the data from the table in our variables
 std::cout << “a=” << myclass.a << “\t”
 “b=” << myclass.b << std::endl;
 }

Using serial columns
If tables are designed, you have to create a primary key to identify uniquely a specific row in the
table. Sometimes it is enough to use just some arbitrary unique number. Databases has support for a
automatically generated primary key. It actually depends on the database, how to create such
columns. Since tntdb has no support for ddl statements (create table …), there is actually no need to
abstract the creation of these columns. But in applications it is often needed to know, which number
was given to the last inserted row. This is also depends on the actual database software used.

Tntdb helps retrieving that last insert id. There is a method “long
tntdb::Connection::lastInsertId(const std::string& name)”

There is one problem. Some databases (postgresql, oracle) use named sequences and a single table
may have multiple of them. So to fetch the actual id, we need to tell the driver, which sequence we

want to know. The sequence is identified by name. Other databases (mysql, sqlite) do not have a
identifier. They will simply ignore the passed name.

This name is by default an empty string, which requests the last incremented serial number in the
current transaction.

Here is a example. We assume a table foo with 2 columns: id and name. The id is the primary auto
incremented key. In postgresql or oracle the sequence is created with the name “foo_id_seq”:

void insertData(tntdb::Connection conn)
{
 tntdb::Statement ins = conn.prepare(
 “insert into foo (name)”
 “ values(:name)”);

 ins.set(“name”, “some name”)
 .execute();

 std::cout << “id: “ << conn.lastInsertId(“foo_id_seq”) << std::endl;
 // or mostly you can just omit the serial name
 std::cout << “id: “ << conn.lastInsertId() << std::endl;
}

Connectionpool
In a long-running program it is often desirable not to connect and disconnect for every access. One
solution is to keep a connection open somewhere and use is as needed. In a multi threaded
application the user has to make sure, that there is only one thread at a time accessing the database
through a single connection.

To solve this, Tntdb offerers a automatic connectionpool. When the call to tntdb::connect is
replaced with tntdb::connectCached a special connection is returned. This connection works just
like the normal connection (it is the same class), but when destroyed, it does not close the
connection, but puts the connection to a free pool. When tntdb::connectCached is called again with
the same parameter, the connection is reused. When the old connection is still in use,
connectCached just creates a new one.

Example:

std::string url = „mysql:db=mydb;host=192.168.0.1“;
tntdb::Connection conn;
conn = tntdb::connectCached(url); // connects to the db
conn = tntdb::Connection(); // puts the connection back to the pool
conn = tntdb::connectCached(url); // fetches the same connection
 // (if not already fetched by another thread)
tntdb::dropCached(); // closes all free connections, but not ours,
 // because it is hold by 'conn'
conn = tntdb::Connection();
tntdb::dropCached(); // closes the connection, because we released it

Statementcache
As told previously statement-reuse improves performance quite heavily. It is advisable to try to use
prepared statements where possible. In the case of a connectionpool it is quite difficult to maintain
prepared statements, because they are specific to the connection.

Tntdb helps here by putting a statementcache into the connection-class. When calls to
tntdb::Connection::prepare is replaced with tntdb::Connection::prepareCached, tntdb looks into
the connection, if the same statement is already prepared earlier and returns this when needed and
calls prepare and fills the statement-cache with this new statement otherwise.

	Introduction
	Connecting
	The Postgresql driver
	The Sqlite driver
	The mysql driver
	The oracle driver

	Execute query
	Selecting data
	Prepared statements
	Working with cursors
	Using RowReader
	Transactions
	Using dates and times
	Using own types
	Using serial columns
	Connectionpool
	Statementcache

