
OpenSE BASIC
Quick Reference

 Overview
OpenSE BASIC is an open source implementation of Sinclair BASIC including many
improvements over the original, while retaining a high level of compatibility. Some of the
highlights are:

• Overall fastest version of Sinclair BASIC - fully optimized for speed
• Fastest and most user friendly editor - with additional editing commands
• AY support including pseudo-interrupt driven sound
• ULAplus support including a default palette and new commands
• 8-bit character set support including printing characters 24-31
• Direct machine code calls
• BASIC access to LDIR
• Hex and Octal number entry
• Decimal to Hex string conversion
• Intelligent error trapping - OK and STOP are not errors
• More room for BASIC programs and line numbers up to 16383
• Improved SCREEN$ handling for UDGs and 8-bit character sets
• Improved floating-point library - faster and more accurate
• Remains compatible with the majority of Spectrum software and hardware
• Ability to use reserved words as variable names during tokenization

New Command Summary
You will find here a brief description of the 11 new commands in OpenSE BASIC. A single
letter is used to represent a numeric expression. Check the given section for a full explanation
of the syntax offered.

COPY A command used to call a machine code routine without returning a value

in BC. Defaults to 0 which has no effect.
DELETE f, l You would use this command to delete a block of program lines, where f is

the first line number of the block and l is the last. If the value of f is greater
than l then the error message “Integer out of range” is displayed on-screen.

DIR b A command used to toggle 8-bit character set support on and off where b is
7 or 8. By default 7-bit character sets are used and characters above 127
are displayed as block graphics, UDGs, and tokens.

EDIT l Use this command to display line l in the input line and activate the line-
editor.
See The Editor

ERASE Use this command to reset the default palette.
See ULAplus Support

FORMAT p A command used to set the permanent attribute.
See ULAplus Support

MOVE s, d, l A command to enable access to the Z80’s LDIR (block copy) instruction. A
total of l bytes are copied from the source address s to the destination
address d. Use with extreme caution as overwriting the system variables or
the BASIC program will probably cause a crash.

ON ERR ... Use ON ERR GOTO n to go to line ‘n’ when an error is trapped.
Use ON ERR CONTINUE to continue the program without displaying
the error message.
Use ON ERR STOP to display the error message.
See Error Trapping

PALETTE ... A command used to set the colours in computers fitted with the ULAplus
display chip.
See ULAplus Support

RENUM ... A command used to renumber the current program.
See RENUMbering

SOUND ... A command used to produce sound effects and three channel tunes
in computers fitted with an AY-3-8912 sound chip.
See Programmable Sound Generator

New Function Summary
The following new function symbols work in much the same way as the BIN function.
 & Used to enter 16-bit hexadecimal positive integers (in upper or lower case),

for example 10 PRINT &FFFF
 \ Used to enter 16-bit octal positive integers, for example 10 PRINT \177777
 ~ Used to convert 16-bit decimal positive integers to a hexadecimal string, for

example 10 PRINT ~65535

A much larger number of functions can be added using the DEF FN command.

Getting Started
OpenSE BASIC is supplied as a 16K ROM file for use with emulators or real machines as a
replacement ROM or Interface II cartridge. Please refer to you emulator for instructions on
how to use alternate ROMs or Interface II cartridges. OpenSE BASIC is not designed to be used
as a replacement for 48 BASIC in computers with 32K or 64K ROMs. In a 32K-ROM computer
you should put the original Sinclair ROM in the other 16K. In a 64K-ROM computer you
should put OpenSE BASIC and the original Sinclair ROM in one bank of 32K and the UK
Sinclair 128 ROMs in the other bank. This will ensure you are able to run the widest range of
software.

On a 32K ROM computer:

OUT 32765, 0 = select ROM 0
OUT 32765, 16 = select ROM 1

On a 64K ROM computer:

OUT 8189, 0: OUT 32765, 0 = select ROM 0
OUT 8189, 0: OUT 32765, 16 = select ROM 1
OUT 8189, 4: OUT 32765, 0 = select ROM 2
OUT 8189, 4: OUT 32765, 16 = select ROM 3

NOTE: The computer may crash part way through changing ROMs if either OUT instructions
causes a ROM other than a version of BASIC to be paged in. When OpenSE BASIC is used on a
128K machine it is effectively in ‘USR 0’ mode.

The Keyboard
When you switch on your computer you will be greeted by the standard copyright message.
Try typing a few characters on the keyboard and you will notice that the keys are not
producing their usual keywords; instead you see just single characters. From now on, you will
have to type out each command in full rather than use the infamous keywords; a facility
which transforms your computer keyboard into something approaching that of a ‘normal’
computer.

Although removing the keyword system has many advantages, the change does have a
drawback. Certain commands such as ‘PRINT’ could be typed in just by pressing the ‘P’ key,
whereas now you will have to type out ‘P’, ‘R’, ‘I’, ‘N’, and ‘T’; for that reason, OpenSE BASIC
allows you to abbreviate many of the keywords.

Here follows a complete list of keywords and their new abbreviations; you can assume that
keywords omitted from the list cannot be abbreviated and therefore must be typed out in full.
Also note that an abbreviated keyword must finish with a full stop; for example, the
abbreviation for ‘CONTINUE’ is ‘CON.’.

A.TTR ED.IT LO.AD RA.NDOMIZE
BE.EP ER.ASE ME.RGE RE.AD
B.IN E.XP M.OVE REN.UM
BO.RDER FL.ASH NE.XT RES.TORE
BR.IGHT F.ORMAT N.OT RET.URN
CH.R$ GOS.UB ON.ERR R.ND
CI.RCLE G.OTO OP.EN# SA.VE
CLE.AR I.NK OV.ER S.CREEN$
CL.OSE# INKE.Y$ PA.PER SO.UND
C.ODE INP.UT PAL.ETTE ST.R$
CON.TINUE INV.ERSE PAU.SE T.AB
DA.TA L.EN PE.EK TH.EN
D.EFFN LI.NE PL.OT U.SR
DEL.ETE LL.IST P.OINT V.AL$
DR.AW LP.RINT PR.INT VE.RIFY

[S]+Q = LOAD [S]+W = CODE [S]+E = RUN [I]+V = SIN
[I]+W = COS [I]+X = TAN [I]+Y = ASN [I]+Z = ACS

If you are going to be typing commands such as ‘GO TO’ and ‘ON ERR’, you do not have to
remember to insert the spaces. The commonly used keywords LOAD, CODE, and RUN are
available as Symbol Shift and ‘Q’, ‘W’, and ‘E’.

+------+------+------+------+------+------+------+------+------+------+
EDIT	CAPS	TRUE	INV.	<-	\/	/\	->	INS.	DEL.
1 :.	2 .:	3 ..	4 :’	5 :	6 .’	7 .	8 ::	9	0
!	@	#	$	%	&	‘	()	_
+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+									
	COS				ASN				
Q	W	E	R	T	Y	U	I	O	P
LOAD	CODE	RUN	<	>	[]	©	;	“
 +--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+
 | | | | | | | | | | | |
 | A | S | D | F | G | H | J | K | L | ENT. |
 | ~ | | | \ | { | } | ^ | - | + | = | |
 +---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+--+---+
	ACS	TAN		SIN					BRK.
CAPS	Z	X	C	V	B	N	M	SYM.	SPA.
SHF.	:	£	?	/	*	,	.	SHF.	
 +------+------+------+------+------+------+------+------+------+------+

The Editor
The line editing capabilities have been greatly enhanced by OpenSE BASIC. The cursor shows
the current mode:

[.] CAPS OFF
[’] CAPS ON
[I] INSERT

You will notice that [E] (EXTENDED mode) is missing. You can still use Caps Shift, Symbol
Shift and the number keys to insert control codes, but all symbols are now accessed with
Symbol Shift and a key, for instance Symbol Shift ‘I’ produces the copyright symbol. Holding
down Caps Shift in caps mode will produce a lower case letter and you can now cursor up and
down in an EDIT line.

As well as using Caps Shift ‘1’ to edit the current line it is possible to edit any line in the
program by using the ‘EDIT’ command. This command is followed by a numeric experssion
that shows which line is to be edited. If the required line does not exist, then the next program
line is used.

In the original ROM it was possible to use keyword names as variable names. This is still
supported providing you enter the line in [I] mode, and the variable name contains at least
one lowercase character, but remember that variable names are case insensitive. In this mode
keywords must be uppercase or they will be ignored by the tokenizer.

The valid line range has been increased from 1-9999 to 1-16383. Programs using line
numbers above 9999 will also work with the original ROM.

ULAplus Support
OpenSE BASIC sets a default 64-colour mode palette for ULAplus, although this mode is off by
default.

This program tests if ULAplus hardware is present:

10 OUT 48955,0: OUT 65339,0: PAUSE 1: LET i = IN 65339
20 IF i = 0 THEN PRINT “ULAplus detected”

To switch on 64-colour RGB mode:

PALETTE 64,1

To switch on 64-colour HSL mode:

PALETTE 64,2

To switch on 64-colour CMYK mode:

PALETTE 64,3

To switch off 64-colour mode:

PALETTE 64,0

The following program will display the default palette.

10 FOR x=0 TO 255
20 FORMAT x
30 PRINT CHR$ 131;
40 NEXT x

The palette is designed to work well with existing software, and to be easy to use from BASIC.
The fourth CLUT (3) is an approximation of a grey scale and has the same colours for PEN and
PAPER enabling you to combine any of the colours in a character cell.

To restore the default palette:

ERASE

To set one of the 64 colours:

PALETTE c, BIN gggrrrbb

where c is a colour (0-63), and g, r, and b are colour bits for green, red, and blue. For example,
bright red is BIN 00011100. The value of c corresponds to the colour values 0-7 in each colour
look-up table (CLUT)

 0-7 non-bright PEN
 8-15 non-bright PAPER (BORDER in lo-res)
16-23 bright PEN
24-31 bright PAPER (BORDER in hi-res)
32-39 flash PEN
40-47 flash PAPER
48-55 flash/bright PEN
56-63 flash/bright PAPER

You may prefer to use hex (&)

&00-&07 non-bright PEN
&08-&0f non-bright PAPER (BORDER in lo-res)
&10-&17 bright PEN
&18-&1f bright PAPER (BORDER in hi-res)
&20-&27 flash PEN
&28-&2f flash PAPER
&30-&37 flash/bright PEN
&38-&3f flash/bright PAPER

or octal (\)

\00-\07 non-bright PEN
\10-\17 non-bright PAPER (BORDER in lo-res)
\20-\27 bright PEN
\30-\37 bright PAPER (BORDER in hi-res)
\40-\47 flash PEN
\50-\57 flash PAPER
\60-\67 flash/bright PEN
\70-\77 flash/bright PAPER

You can set the permanent attributes with a single command using FORMAT n. Using the
octal (\) you can set the CLUT, PAPER, and PEN as follows:

FORMAT \cpi

where c is the CLUT (0-3), p is the PAPER selection (0-7), and i is the PEN selection (0-7).

You may want to set the PAPER colours in the first three CLUTS (0-2) to be the same. While
this gives only eight background colours, it enables you to use 24 foreground colours without
worrying about what the background colour is. The following command will prevent the
background colour being changed when you PRINT or PLOT to the screen:

PAPER 8: BRIGHT 8: FLASH

When creating your own palettes, you can also use PEN 8: BRIGHT 8: FLASH 8 to set up
a palette with 32 PAPERs and 8 PENs if you prefer.

For further information, see: http://sites.google.com/site/ulaplus/

 Programmable Sound Generator
The most requested command to add to SE BASIC was PLAY. But there was no room. Instead,
the AY is supported by the SOUND command, which enables you to send a set of register pairs
to the AY chip. Unlike the PLAY command, the SOUND command will keep playing until an
error, or the end of the program, are encountered. When an error report is printed, the AY is
silenced. The AY is supported simultaneously on the Spectrum+ 128K and the TS2068 ports.
For example, to play the note of A for one second on a 50Hz machine:

10 SOUND 0,124;1,0;8,13;7,62
20 PAUSE 50

The SOUND command allows you to compose music in harmony, with three channels instead
of BEEP’s one at your disposal. It can also produces some interesting sound effects to add to
your programs.

The SOUND command is followed by pairs of numbers, the pairs separates by semicolons and
the individual numbers within the pairs by commas. You can include up to 15 pairs of
numbers in each SOUND statement. In each pair, the first designates one of fifteen registers—
storage locations—within the special sound/music synthesizer chip. These registers control
pitch, duration, and volume of the sound being produced. The following examples are from the
Timex Sinclair TS2068 User Manual:

Gunshots

10 SOUND 6,15;7,7;8,16;9,16;10,16;12,16;13,0
20 PAUSE 50
30 GO TO 10

Explosion

10 SOUND 6,6;7,7;8,16;9,16;10,16;12,56;13,8
20 PAUSE 75
30 SOUND 8,0;9,0;10,0

Whistling Bomb

10 SOUND 7,62;8,15
20 FOR I=50 TO 100
30 SOUND 0,I: PAUSE 2.5
40 NEXT I

AY-3-891x Note Tables
Note that the discrepancies in the tables in the TS2068 User Manual and the TS2068
Intermediate/Advanced Guide are due to the former being calculated against a 1.75 Mhz chip
with truncation instead of rounding, and the latter being calculated on the TS2068 ROM
which contains floating point errors that were present in the original ROM.

1.75000 Mhz
(TC2068, Spectrum 16K/48K with external AY)

 Ideal Tune Registers Actual
Note Octave Frequency Period Coarse Fine Frequency
 C 1 32.703 3344 13 16 32.708
 C# 1 34.648 3157 12 85 34.645
 D 1 36.708 2980 11 164 36.703
 D# 1 38.891 2812 10 252 38.896
 E 1 41.203 2655 10 95 41.196
 F 1 43.654 2506 9 202 43.645
 F# 1 46.249 2365 9 61 46.247
 G 1 48.999 2232 8 184 49.003
 G# 1 51.913 2107 8 59 51.910

 A 1 55.000 1989 7 197 54.990
 A# 1 58.270 1877 7 85 58.271
 B 1 61.735 1772 6 236 61.724
 C 2 65.406 1672 6 136 65.416
 C# 2 69.296 1578 6 42 69.312
 D 2 73.416 1490 5 210 73.406
 D# 2 77.782 1406 5 126 77.792
 E 2 82.407 1327 5 47 82.423
 F 2 87.307 1253 4 229 87.291
 F# 2 92.499 1182 4 158 92.534
 G 2 97.999 1116 4 92 98.006
 G# 2 103.826 1053 4 29 103.870
 A 2 110.000 994 3 226 110.035
 A# 2 116.541 939 3 171 116.480
 B 2 123.471 886 3 118 123.448
 C 3 130.813 836 3 68 130.831
 C# 3 138.591 789 3 21 138.625
 D 3 146.832 745 2 233 146.812
 D# 3 155.563 703 2 191 155.583
 E 3 164.814 664 2 152 164.721
 F 3 174.614 626 2 114 174.720
 F# 3 184.997 591 2 79 185.068
 G 3 195.998 558 2 46 196.013
 G# 3 207.652 527 2 15 207.543
 A 3 220.000 497 1 241 220.070
 A# 3 233.082 469 1 213 233.209
 B 3 246.942 443 1 187 246.896
 C 4 261.626 418 1 162 261.663
 C# 4 277.183 395 1 139 276.899
 D 4 293.665 372 1 116 294.019
 D# 4 311.127 352 1 96 310.724
 E 4 329.628 332 1 76 329.443
 F 4 349.228 313 1 57 349.441
 F# 4 369.994 296 1 40 369.510
 G 4 391.995 279 1 23 392.025
 G# 4 415.305 263 1 7 415.875
 A 4 440.000 249 0 249 439.257
 A# 4 466.164 235 0 235 465.426
 B 4 493.883 221 0 221 494.910
 C 5 523.251 209 0 209 523.325
 C# 5 554.365 197 0 197 555.203
 D 5 587.330 186 0 186 588.038
 D# 5 622.254 176 0 176 621.449
 E 5 659.255 166 0 166 658.886
 F 5 698.456 157 0 157 696.656
 F# 5 739.989 148 0 148 739.020
 G 5 783.991 140 0 140 781.250
 G# 5 830.609 132 0 132 828.598
 A 5 880.000 124 0 124 882.056
 A# 5 932.328 117 0 117 934.829
 B 5 987.767 111 0 111 985.360
 C 6 1046.502 105 0 105 1041.667
 C# 6 1108.731 99 0 99 1104.798
 D 6 1174.659 93 0 93 1176.075
 D# 6 1244.508 88 0 88 1242.898
 E 6 1318.510 83 0 83 1317.771
 F 6 1396.913 78 0 78 1402.244
 F# 6 1479.978 74 0 74 1478.041

 G 6 1567.982 70 0 70 1562.500
 G# 6 1661.219 66 0 66 1657.197
 A 6 1760.000 62 0 62 1764.113
 A# 6 1864.655 59 0 59 1853.814
 B 6 1975.533 55 0 55 1988.636
 C 7 2093.005 52 0 52 2103.365
 C# 7 2217.461 49 0 49 2232.143
 D 7 2349.318 47 0 47 2327.128
 D# 7 2489.016 44 0 44 2485.795
 E 7 2637.020 41 0 41 2667.683
 F 7 2793.826 39 0 39 2804.487
 F# 7 2959.955 37 0 37 2956.081
 G 7 3135.963 35 0 35 3125.000
 G# 7 3322.438 33 0 33 3314.394
 A 7 3520.000 31 0 31 3528.226
 A# 7 3729.310 29 0 29 3771.552
 B 7 3951.066 28 0 28 3906.250
 C 8 4186.009 26 0 26 4206.731
 C# 8 4434.922 25 0 25 4375.000
 D 8 4698.636 23 0 23 4755.435
 D# 8 4978.032 22 0 22 4971.591
 E 8 5274.041 21 0 21 5208.333
 F 8 5587.652 20 0 20 5468.750
 F# 8 5919.911 18 0 18 6076.389
 G 8 6271.927 17 0 17 6433.824
 G# 8 6644.875 16 0 16 6835.938
 A 8 7040.000 16 0 16 6835.938
 A# 8 7458.620 15 0 15 7291.667
 B 8 7902.133 14 0 14 7812.500

1.76400 Mhz
(TS2068)

 Ideal Tune Registers Actual
Note Octave Frequency Period Coarse Fine Frequency
 C 1 32.703 3371 13 43 32.705
 C# 1 34.648 3182 12 110 34.648
 D 1 36.708 3003 11 187 36.713
 D# 1 38.891 2835 11 19 38.889
 E 1 41.203 2676 10 116 41.200
 F 1 43.654 2526 9 222 43.646
 F# 1 46.249 2384 9 80 46.246
 G 1 48.999 2250 8 202 49.000
 G# 1 51.913 2124 8 76 51.907
 A 1 55.000 2005 7 213 54.988
 A# 1 58.270 1892 7 100 58.272
 B 1 61.735 1786 6 250 61.730
 C 2 65.406 1686 6 150 65.391
 C# 2 69.296 1591 6 55 69.296
 D 2 73.416 1502 5 222 73.402
 D# 2 77.782 1417 5 137 77.805
 E 2 82.407 1338 5 58 82.399
 F 2 87.307 1263 4 239 87.292
 F# 2 92.499 1192 4 168 92.492
 G 2 97.999 1125 4 101 98.000
 G# 2 103.826 1062 4 38 103.814
 A 2 110.000 1002 3 234 110.030
 A# 2 116.541 946 3 178 116.543
 B 2 123.471 893 3 125 123.460

 C 3 130.813 843 3 75 130.783
 C# 3 138.591 796 3 28 138.505
 D 3 146.832 751 2 239 146.804
 D# 3 155.563 709 2 197 155.501
 E 3 164.814 669 2 157 164.798
 F 3 174.614 631 2 119 174.723
 F# 3 184.997 596 2 84 184.983
 G 3 195.998 563 2 51 195.826
 G# 3 207.652 531 2 19 207.627
 A 3 220.000 501 1 245 220.060
 A# 3 233.082 473 1 217 233.087
 B 3 246.942 446 1 190 247.197
 C 4 261.626 421 1 165 261.876
 C# 4 277.183 398 1 142 277.010
 D 4 293.665 375 1 119 294.000
 D# 4 311.127 354 1 98 311.441
 E 4 329.628 334 1 78 330.090
 F 4 349.228 316 1 60 348.892
 F# 4 369.994 298 1 42 369.966
 G 4 391.995 281 1 25 392.349
 G# 4 415.305 265 1 9 416.038
 A 4 440.000 251 0 251 439.243
 A# 4 466.164 237 0 237 465.190
 B 4 493.883 223 0 223 494.395
 C 5 523.251 211 0 211 522.512
 C# 5 554.365 199 0 199 554.020
 D 5 587.330 188 0 188 586.436
 D# 5 622.254 177 0 177 622.881
 E 5 659.255 167 0 167 660.180
 F 5 698.456 158 0 158 697.785
 F# 5 739.989 149 0 149 739.933
 G 5 783.991 141 0 141 781.915
 G# 5 830.609 133 0 133 828.947
 A 5 880.000 125 0 125 882.000
 A# 5 932.328 118 0 118 934.322
 B 5 987.767 112 0 112 984.375
 C 6 1046.502 105 0 105 1050.000
 C# 6 1108.731 99 0 99 1113.636
 D 6 1174.659 94 0 94 1172.872
 D# 6 1244.508 89 0 89 1238.764
 E 6 1318.510 84 0 84 1312.500
 F 6 1396.913 79 0 79 1395.570
 F# 6 1479.978 74 0 74 1489.865
 G 6 1567.982 70 0 70 1575.000
 G# 6 1661.219 66 0 66 1670.455
 A 6 1760.000 63 0 63 1750.000
 A# 6 1864.655 59 0 59 1868.644
 B 6 1975.533 56 0 56 1968.750
 C 7 2093.005 53 0 53 2080.189
 C# 7 2217.461 50 0 50 2205.000
 D 7 2349.318 47 0 47 2345.745
 D# 7 2489.016 44 0 44 2505.682
 E 7 2637.020 42 0 42 2625.000
 F 7 2793.826 39 0 39 2826.923
 F# 7 2959.955 37 0 37 2979.730
 G 7 3135.963 35 0 35 3150.000
 G# 7 3322.438 33 0 33 3340.909
 A 7 3520.000 31 0 31 3556.452

 A# 7 3729.310 30 0 30 3675.000
 B 7 3951.066 28 0 28 3937.500
 C 8 4186.009 26 0 26 4240.385
 C# 8 4434.922 25 0 25 4410.000
 D 8 4698.636 23 0 23 4793.478
 D# 8 4978.032 22 0 22 5011.364
 E 8 5274.041 21 0 21 5250.000
 F 8 5587.652 20 0 20 5512.500
 F# 8 5919.911 19 0 19 5802.632
 G 8 6271.927 18 0 18 6125.000
 G# 8 6644.875 17 0 17 6485.294
 A 8 7040.000 16 0 16 6890.625
 A# 8 7458.620 15 0 15 7350.000
 B 8 7902.133 14 0 14 7875.000

1.77345 Mhz
(Spectrum 128K)

 Ideal Tune Registers Actual
Note Octave Frequency Period Coarse Fine Frequency
 C 1 32.703 3389 13 61 32.706
 C# 1 34.648 3199 12 127 34.649
 D 1 36.708 3020 11 204 36.702
 D# 1 38.891 2850 11 34 38.891
 E 1 41.203 2690 10 130 41.205
 F 1 43.654 2539 9 235 43.655
 F# 1 46.249 2397 9 93 46.241
 G 1 48.999 2262 8 214 49.001
 G# 1 51.913 2135 8 87 51.916
 A 1 55.000 2015 7 223 55.008
 A# 1 58.270 1902 7 110 58.276
 B 1 61.735 1795 7 3 61.750
 C 2 65.406 1695 6 159 65.393
 C# 2 69.296 1600 6 64 69.275
 D 2 73.416 1510 5 230 73.404
 D# 2 77.782 1425 5 145 77.783
 E 2 82.407 1345 5 65 82.409
 F 2 87.307 1270 4 246 87.276
 F# 2 92.499 1198 4 174 92.521
 G 2 97.999 1131 4 107 98.002
 G# 2 103.826 1068 4 44 103.783
 A 2 110.000 1008 3 240 109.961
 A# 2 116.541 951 3 183 116.552
 B 2 123.471 898 3 130 123.431
 C 3 130.813 847 3 79 130.863
 C# 3 138.591 800 3 32 138.551
 D 3 146.832 755 2 243 146.809
 D# 3 155.563 713 2 201 155.457
 E 3 164.814 673 2 161 164.696
 F 3 174.614 635 2 123 174.552
 F# 3 184.997 599 2 87 185.043
 G 3 195.998 566 2 54 195.831
 G# 3 207.652 534 2 22 207.567
 A 3 220.000 504 1 248 219.922
 A# 3 233.082 476 1 220 232.858
 B 3 246.942 449 1 193 246.861
 C 4 261.626 424 1 168 261.417
 C# 4 277.183 400 1 144 277.102
 D 4 293.665 377 1 121 294.007

 D# 4 311.127 356 1 100 311.350
 E 4 329.628 336 1 80 329.883
 F 4 349.228 317 1 61 349.655
 F# 4 369.994 300 1 44 369.469
 G 4 391.995 283 1 27 391.663
 G# 4 415.305 267 1 11 415.133
 A 4 440.000 252 0 252 439.844
 A# 4 466.164 238 0 238 465.717
 B 4 493.883 224 0 224 494.824
 C 5 523.251 212 0 212 522.833
 C# 5 554.365 200 0 200 554.203
 D 5 587.330 189 0 189 586.458
 D# 5 622.254 178 0 178 622.700
 E 5 659.255 168 0 168 659.766
 F 5 698.456 159 0 159 697.111
 F# 5 739.989 150 0 150 738.938
 G 5 783.991 141 0 141 786.104
 G# 5 830.609 133 0 133 833.388
 A 5 880.000 126 0 126 879.688
 A# 5 932.328 119 0 119 931.434
 B 5 987.767 112 0 112 989.648
 C 6 1046.502 106 0 106 1045.666
 C# 6 1108.731 100 0 100 1108.406
 D 6 1174.659 94 0 94 1179.156
 D# 6 1244.508 89 0 89 1245.400
 E 6 1318.510 84 0 84 1319.531
 F 6 1396.913 79 0 79 1403.046
 F# 6 1479.978 75 0 75 1477.875
 G 6 1567.982 71 0 71 1561.136
 G# 6 1661.219 67 0 67 1654.338
 A 6 1760.000 63 0 63 1759.375
 A# 6 1864.655 59 0 59 1878.655
 B 6 1975.533 56 0 56 1979.297
 C 7 2093.005 53 0 53 2091.333
 C# 7 2217.461 50 0 50 2216.813
 D 7 2349.318 47 0 47 2358.311
 D# 7 2489.016 45 0 45 2463.125
 E 7 2637.020 42 0 42 2639.063
 F 7 2793.826 40 0 40 2771.016
 F# 7 2959.955 37 0 37 2995.693
 G 7 3135.963 35 0 35 3166.875
 G# 7 3322.438 33 0 33 3358.807
 A 7 3520.000 31 0 31 3575.504
 A# 7 3729.310 30 0 30 3694.688
 B 7 3951.066 28 0 28 3958.594
 C 8 4186.009 26 0 26 4263.101
 C# 8 4434.922 25 0 25 4433.625
 D 8 4698.636 24 0 24 4618.359
 D# 8 4978.032 22 0 22 5038.210
 E 8 5274.041 21 0 21 5278.125
 F 8 5587.652 20 0 20 5542.031
 F# 8 5919.911 19 0 19 5833.717
 G 8 6271.927 18 0 18 6157.813
 G# 8 6644.875 17 0 17 6520.037
 A 8 7040.000 16 0 16 6927.539
 A# 8 7458.620 15 0 15 7389.375
 B 8 7902.133 14 0 14 7917.188

 Advanced Programming
Programs written in OpenSE BASIC will run on the original unmodified ROM providing you
restrict yourself to the original commands, although you can safely use line numbers beyond
9999. However, you may want to determine if the SE BASIC ROM is present, either to branch
or to inform the user that their ROM is not supported. The following program determines if SE
BASIC is present:

10 LET r$ = CHR$ (PEEK 43) + CHR$ (PEEK 44)
20 IF r$ = “SE” THEN PRINT “SE BASIC detected”

To determine the version number:

PRINT CHR$ (PEEK 37) + “.” + CHR$ (PEEK 38) + CHR$ (PEEK 39)

Versions prior to 3.00 are not open source.

IF ... ELSE
Although OpenSE BASIC does not include an ELSE command, IF ... ELSE can be constructed as
follows:

10 IF a = true THEN GO TO lineA
20 IF b = true THEN GO TO lineB
30 IF c = true THEN GO TO lineC
40 GO TO lineD

WHILE ... DO
In this kind of loop the test is carried out first. For example:

10 IF i =< 100 THEN GO TO 40
20 INPUT “Enter a number above 100: “; i
30 GO TO 10
40 REM END

REPEAT ... UNTIL
In this kind of loop the commands are carried out first. For example:

10 INPUT “Enter a number above 100: “; i
20 IF i =< 100 THEN GO TO 10
30 REM END

NAMED PROCEDURES
Although OpenSE BASIC does not allow you to create named procedures, you can use
definitions to make your programs more readable. For example:

10 LET HISCORE = 1000
20 GO SUB HISCORE
1000 REM PROC: HISCORE

NOTE: If you RENUMber your program you will have to manually change your definitions.
Therefore you should use the REM statement to label your procedures.

BOOLEAN LOGIC
OpenSE BASIC provides three boolean operators, AND, OR, and NOT. The result of testing
these operators is always 1 (true) or 0 (false). To make programs easier to read it may be
worth defining variables for these results as follows:

10 LET true = 1 : LET false = 0

For example:

100 IF a AND b = true THEN GO SUB procedure

DPOKE
The double POKE command can be implemented as follows:

10 POKE address, number - INT(number/256)*256
20 POKE address + 1, INT(number/256)

FREE ()
This will return the same result as DEF FN F()=65536-USR 7962 does on the original ROM:

DEF FN F()=(PEEK 23731*256)+PEEK 23730-((PEEK 23654*256)+PEEK 23653)-110

Error Trapping
ON ERR can be used to prevent the user BREAKing into a program, or to trap errors. Note, OK
and STOP are not treated as errors, but STOP in INPUT is. The following commands are
accepted:

ON ERR GO TO n
ON ERR CONTINUE
ON ERR STOP

These statements allow the progammer to disable automatic program termination upon
encountering an error condition. The ON ERR GOTO line number allows the programer to
cause the transfer to the specified line number to handle the encountered error. The ON ERR
CONTINUE statement causes the program to resume execution at the statement in which the
error originally occured. The ON ERR STOP command disables this feature causing the
program to report errors and terminate in the usual manner.

The errors ‘OK’ and ‘STOP’ are not treated as errors and the program will terminate if they
are encountered. ‘STOP in INPUT’ is. ON ERR CONTINUE has the side effect of preventing a
user accidentally BREAKing into a program. However, if the program does not encounter an
‘OK’ or ‘STOP’ error, it is possible to get stuck in an infinite loop. The only way to BREAK out of
this loop is by triggering a warm restart using the NMI button. To completely prevent the
user breaking into the program the NMI BREAK can be disabled by setting the
NMIADD system variable to zero.

Renumbering
The following commands change the line numbers of your program:

RENUM

This instruction will renumber all your program lines in steps of ten, starting with the first
line as 10.

RENUM l

makes number ‘l’ the first new line number

RENUM l,s

uses numbers in whatever step ‘s’ you instruct.

When RENUMbering, all your instructions like GO TO, GO SUB, RESTORE, RUN, LINE, ON ERR
GO TO etc. are dealt with, but any expressions such as GO TO VAL “100”, EDIT 100, DELETE
100,100, and RENUM 100,100,100,100 will be ignored.

Keyword Reference
This reference contains full descriptions of all the keywords available in OpenSE BASIC. Each
entry includes:

• abbreviation
• class
• purpose
• use
• format

Keywords fall into one or more of the following classes:

• Command
!A keyword which causes an action to occur and can be used to form a direct command.
It is carried out on being entered. Examples — RUN, LOAD

• Statement
!A keyword which causes an action to occur and which can be used in a program line. It
is carried out only when the program is run. Examples — DRAW, INPUT

• Function !
A keyword which produces a value of some kind. It forms part of a command or
statement. Examples — RND, INT.

• Logical Operator !
A keyword which is used to express logic in a statement or command. It can determine
or change the truth of certain conditions. OpenSE BASIC has three logical operator
keywords — AND, OR and NOT.

Numbers are stored to an accuracy of 9 or 10 digits. The number handling range is about
1038 to 4 * 10-39. Three types of variables are accepted:

• Number !
Any length, starting with a letter. Spaces are ignored and all letters are converted to
lower-case letters. Capital and lower-case letters are not distinguished. You can use
keywords as variables, only if you enter keywords in capitals and variables in lower or
mixed case and enter G mode before entering a line.

• String !
Any single letter followed by $. Capital and lower-case letters are not distinguished.

• Array
!For array variables and subscripts, see DIM.

The following abbreviations are used in the keyword descriptions:

• num-const — a numeric constant, such 24.5.
• num-var — a variable that may contain a numeric constant, such as sum.
• num-expr — any valid combination of numeric constants, variables and keywords that

gives a number, such as RND*7.
• int-num-const, int-num-var, int-num-expr — a numeric constant, variable or

expression whose value is rounded to the nearest integer.
• string-const — a string constant or string, such as “OpenSE BASIC”.
• string-var — a variable that may contain a string, such as a$.
• string-expr — any valid combination of string constants, variables and keywords that

gives a string, such as a$(6 TO 8).
• letter — any capital or lower-case letter.
• letter$ — any capital or lower-case letter followed by $.
• cond — a condition or sub-condition within a condition, such as x=10 AND t<10.
• statement — any OpenSE BASIC statement that is valid when used with another

statement, such as PRINT PEN 2;x.
• prompt — [string-const][(String-expr)][AT int-num-expr,int-num-

expr][statement][:][,][’]
• [] — an optional item that may be repeated.

The following signs are used in OpenSE BASIC:
• $ string variable.
• ‘ begins new line.
• (open bracket.
•) close bracket.
• <= is less than or equal to.
• <> is not equal to.
• >= is greater than or equal to.
• < is less than.
• > is greater than.
• ^ raise to the power.
• - subtraction or negative.
• + addition, positive, string concatenation .
• = is equal to.
• : separates statements in the program line.
• / division.
• * multiplication.
• . decimal point.
• ; displays at next column, separates statements within a program statement.
• “ open and close string.
• , displays at column 0 or 16, separates values following keywords
• & converts the following four characters from a hex string to decimal
• ~ converts the following positive integer into a hex string
• \ converts the following positive integer from octal to decimal

Keywords

ABS
ABSolute value
Function
ABS num-const ABS num-var ABS (num-expr)

ACS
Arc CoSine
Function
ACS num-const ACS num-var ACS (num-expr)

AND
Logical Operator/Function
cond AND cond num-expr AND num-expr string-expr AND num-expr

ASN
Arc SiNe
Function
ASN num-const ASN num-var ASN (num-expr)

AT
See INPUT, LPRINT, PRINT.

ATN
Arc TaNgent
Function
ATN num-const ATN num-var ATN (num-expr)

ATTR
ATTRibutes
Function
ATTR (num-expr,num-expr)

BEEP
Statement/Command
BEEP num-expr,num-expr

BIN
BINary number
Function
BIN [0][1]

BORDER
Statement/Command
BORDER int-num-expr

BRIGHT
Statement/Command
BRIGHT int-num-expr[;]

CHR$
CHaRacter (string)
CHR$ int-num-const[;][+] CHR$ int-num-var[;][+]CHR$ (int-num-expr)[;][+]

CIRCLE
Statement/Command
CIRCLE [statement;]int-num-expr,int-num-expr,int-num-expr

CLEAR
Statement/Command
CLEAR [num-expr]

CLOSE
Statement/Command
CLOSE #int-num-expr

CLS
Statement/Command
CLS

CODE
Function
CODE string-const CODE string-var CODE (string-expr)

CONTINUE
Command
CONTINUE

COPY
Statement/Command
COPY int-num-const COPY int-num-var COPY (int-num-expr)

COS
COSine
Function
COS num-const COS num-var COS (num-expr)

DATA
Statement
DATA num-expr[,num-expr][,string-expr] DATA string-expr[,num-expr][,string-expr]

DEF FN
DEFine FuNction
Statement
DEF FN letter([letter][,letter]) = num-expr DEF FN letter$([letter$][letter][,letter][,letter$])
= string-expr

DELETE
Command
DELETE int-num-const,int-num-const DELETE int-num-var,int-num-var DELETE (num-
expr),(num-expr)

DIM
DIMension array
Statement
DIM letter (num-expr[,num-expr]) DIM letter$ (num-expr[,num-expr])

DIR
DIsplay Rendering
Statement/Command
DIR int-num-const

DRAW
Statement/Command
DRAW [statement;]int-num-expr,int-num-expr[,int-num-expr]

EDIT
Command
EDIT int-num-const EDIT int-num-var EDIT (int-num-expr)

ERASE
Statement/Command
ERASE

EXP
EXPonent
Function
EXP num-const EXP num-var EXP (num-expr)

FLASH
Statement/Command
FLASH int-num-expr[;]

FN
FuNction
FN letter([num-expr][,num-expr]) FN letter$([string-expr][num-expr][,num-expr][,string-
expr])

FOR
Statement/Command
FOR letter = num-expr TO num-expr[STEP num-expr]

FORMAT
Statement/Command
FORMAT num-const FORMAT num-var FORMAT (num-expr)

GO SUB
GO to SUBroutine
Statement/Command
GO SUB int-num-expr

GO TO
GO TO line
Statement/Command
GO SUB int-num-expr

IF
Statement/Command
IF num-expr THEN statement[:statement] IF cond THEN statement[:statement]

IN
Function
IN num-const IN num-var IN (num-expr)

INKEY$
INput Key (string)
Function
INKEY$

INPUT
Statement/Command
INPUT [prompt][;][,][']num-var INPUT [prompt][;][,][']string-var INPUT [prompt][;][,][']
LINE string-var

INT
INteger
Function
INT num-const INT num-var INT (num-expr)

INVERSE
Statement/Command
INVERSE int-num-expr

LEN
LENgth of string
Function
LEN string-const LEN string-var LEN (string-expr)

LET
Satement/Command
LET num-var = num-expr LET string-var = string-expr

LINE
See INPUT, SAVE

LIST
Command
LIST [int-num-expr]

LLIST
Line printer LIST
LL. (LIST #3)
Command
LLIST [int-num-expr]

LN
Logarithm (Natural)
Function
LN num-const LN num-var LN (num-expr)

LOAD
Command/Statement
LOAD string-expr LOAD string-expr CODE [int-num-expr][,int-num-expr] LOAD string-expr
DATA letter[$]() LOAD string-expr SCREEN$

LPRINT
Line printer PRINT
LP. (PRINT #3)
Statement/Command
LPRINT [TAB int-num-expr;][AT int-num-expr,int-num-expr;][CHR$ (int-num-
expr);][statement;][num- expr][string-expr][;][,][']

MERGE
Statement/Command
MERGE string-expr

MOVE
Statement/Command
MOVE int-num-expr,int-num-expr,int-num-expr

NEW
Command
NEW

NEXT
Statement/Command
NEXT letter

NOT
Logical Operator/Function
NOT cond NOT num-expr

ON ERR
Statement/Command
ON ERR CONTINUE ON ERR GO TO num-expr ON ERR STOP

OPEN
Statement/Command
OPEN #int-num-expr

OR
Logical Operator/Function
cond OR cond num-expr OR num-expr

OUT
Statement/Command
OUT int-num-expr,num-expr

OVER
Statement/Command
OVER int-num-expr

PALETTE
Statement/Command
PALETTE num-expr,num-expr

PAPER
Statement/Command
PAPER int-num-expr[;]

PAUSE
Statement/Command
PAUSE int-num-expr

PEEK
Statement/Command
PEEK int-num-const
PEEK int-num-var PEEK (int-num-expr)

PEN
Statement/Command
PEN int-num-expr[;]

PI
Function
PI

PLOT
Statement/Command
PLOT [statement:]int-num-expr,int-num-expr

POINT
Function
POINT (int-num-expr, int-num-expr)

POKE
Statement/Command
POKE int-num-expr, int-num-expr

PRINT
Statement/Command
PRINT [TAB int-num-expr;][AT int-num-expr,int-num-expr;][CHR$ (int-num-
expr);][statement;][num- expr][string-expr][;][,][']

RANDOMIZE
Statement/Command
RANDOMIZE [int-num-expr]

READ
Statement/Command
READ num-var[,num-var][,string-var] READ string-var[,num-var][,string-var]

REM
REMark
REM [any characters]

RENUM
RENUMber
Command
RENUM [int-num-expr][,int-num-expr]

RESTORE
Statement/Command
RESTORE int-num-expr

RETURN
Statement/Command
RETURN

RND
RaNDom number
Function
RND

RUN
Statement/Command
RUN [int-num-expr]

SAVE
Statement/Command
SAVE string-expr [LINE int-num-expr] SAVE string-expr CODE int-num-expr,int-num-expr
SAVE string-expr DATA letter[$]() SAVE string-expr SCREEN

SCREEN$
SCREEN (string)
Function
SCREEN$ (int-num-expr,int-num-expr)

SGN
SiGN
Function
SGN num-const SGN num-var SGN (num-expr)

SIN
SINe
Function
SIN num-const SIN num-var SIN (num-expr)

SOUND
Statement/Command
SOUND int-num-expr,int-num-expr[;int-num-expr,int-num-expr]

SQR
SQuare Root
Function
SQR num-const SQR num-var SQR (num-expr)

STEP
See FOR.

STOP
Statement/Command
STOP

STR$
STRing (string)
Function
STR$ num-const STR$ num-var STR$ (num-expr)

TAB
TABulate See LPRINT, PRINT.

TAN
TANgetn
TAN num-const TAN num-var TAN (num-expr)

THEN
See IF.

TO
Function
string-const ([num-expr] TO [num-expr]) string-var ([num-expr] TO [num-expr]) (string-
expr)([num-expr] TO [num-expr])

USR
User Sub-Routine
Function
USR int-num-const USR int-num-var USR (int-num-expr) USR string-const USR string-var

VAL
VALue
Function
VAL string-const VAL string-var

VAL$
VALue (string)
Function
VAL$ string-expr

VERIFY
Command/Statement
VERIFY string-expr VERIFY string-expr CODE [int-num-expr][,int-num-expr] VERIFY string-
expr DATA letter[$]() VERIFY string-expr SCREEN$

Extended Character Set
Character sets may contain eight additional characters on character codes 24 to 31. No
definitions are provided by default but you may use these characters in your own user defined
character sets.

8-bit Character Set Support
This is controlled by bit 3 of the system variable FLAGS. You can enable 8-bit character set
support from BASIC with POKE 23658,4 and switch it off again with POKE 23658,0.
Alternatively you can use the DIR command to toggle support on and off.

When the mode is enabled, instead of printing block graphics, UDGs, and tokens, the print
routine will expect to find a further 128 character definitions after the © character
(addressed by the CHARS system variable).

Characters 24-255 are printable but the CHARS system variable (23606-23607) should be
set to point to the zero character.

Memory Map

+-----+---------+------------+---------+-------+------+-----------+...
| ROM | Display | Attributes | Palette | Spare | UDGs | System |
| | File | | | | | Variables |
+-----+---------+------------+---------+-------+------+-----------+...
^ ^ ^ ^ ^ ^ ^ ^
| | | | | | | |
0 16384 22528 23296 23360 23384 23552 23734

...+------------+-------------+----+---------+-----------+----+...
 | Microdrive | Channel | 0x | Basic | Variables | 0x |
 | Maps | Information | 80 | Program | | 80 |
...+------------+-------------+----+---------+-----------+----+...
 ^ ^ ^ ^ ^
 | | | | |
23734 CHANS PROG VARS ELINE

...+--------------------+---+----+-------+---+------------+------------+...
 | Command or program | N | 0x | INPUT | N | Temporary | Calculator |
 | line being entered | L | 80 | Data | L | Work Space | Stack |
...+--------------------+---+----+-------+---+------------+------------+...
 ^ ^ ^ ^
 | | | |
ELINE WORKSP STKBOT STKEND

...+-------+---------+--------+---+----+
 | Spare | Machine | GO SUB | ? | 0x |
 | | Stack | Stack | | 3e |
...+-------+---------+--------+---+----+
 ^ ^ ^ ^
 | | | |
STKEND SP CHANS RAMTOP PRAMT

System Variables
KSTATE 23552 (8) Keyboard state.
LASTK 23560 Shift and key code from last key press.
REPDEL 23561 Delay before keys auto-repeat (in 50ths. of a second);
 normally 25.
REPSPD 23562 Delay between key repeats (in 50ths. of a second); normally
 2.
DEFADD 23563 (2) DEF FN address (offset).
KDATA 23565 Used by keyscan.
TVDATA 23566 (2) Used in handling control codes and their parameters.
STREAMS 23568 (38) For streams -3 to 15, a word gives the displacement
 from the start of the channels area to the assigned channel.
 If the word is zero, the stream is closed.
CHARS 23606 (2) Address 256 bytes below start of main character set.
ERRSOUND 23608 Length of error sound in 50ths. of a second; normally 60.
CLICK 23609 Length of keyboard click (normally zero).
ERRNR 23610 Error number.
FLAGS 23611 Main flags byte.
DFLAG 23612 Display flags.
ERRSP 23613 (2) SP value to use when an error occurs.
LISTSP 23615 (2) SP value to use when an automatic list fills the screen.
MODE 23617 Cursor mode; L, C, E or G.
NEWPPC 23618 (2) New line to jump to.
NSPPC 23620 New statement to jump to, or FFH.
PPC 23621 (2) Current line number during program execution.
SUBPPC 23623 Current statement number.
BORDCR 23624 Attributes for lower screen except in MODE 2.
EPPC 23625 (2) number of line with > cursor.
VARS 23627 (2) Address of variables.
DEST 23629 (2) Used in variable assignments.
CHANS 23631 (2) start of channels area.
CURCHL 23633 (2) start of current channel.
PROG 23635 (2) Program start (address of line number of first line).
NXTLINE 23637 (2) Address of next line in Basic program.
DATADD 23639 (2) Data address used by READ command.
ELINE 23641 (2) Edit line start.
KCUR 23643 (2) Address of cursor in the edit line.
CHADD 23645 (2) Current character address.
XPTR 23647 (2) Address in the edit line of a syntax error.
STKBOT 23651 (2) Address of bottom of calculator stack.
STKEND 23653 (2) End of floating point calculator stack.
BREG 23655 Calculator’s B register.
MEM 23656 (2) Start of calculator’s memory area.
KLFLAG 23658 8 if caps lock is on, else zero.
DFSZ 23659 The number of lines (inclduing one blank line) in the lower
 part of the screen.
SDTOP 23660 (2) Line number of top line in an automatic listing.
COPPC 23662 (2) Line number that CONTINUE goes to.
COSPCC 23664 Statement number that CONTINUE goes to.
FLAGE 23665 Flags used by INPUT command and the editor.
STRIL 23666 (2) Used when variables are assigned to.
TADDR 23668 (2) Address of next item in syntax table.
SEED 23670 (2) Random number seed. Set by RANDOMIZE.
FRAMES 23672 (3) Frames since machine was switched on (LSB first).
UDG 23675 (2) Address of CHR$ 144.
XCOORD 23677 Current graphics position x coordinate, with 0 at the left.
 The range is 0-255.
YCOORD 23678 Current graphics position y coordianate, with 175 at the top
 of the screen and 0 at the bottom.
ERRLN 23679 (2) line to go to ON ERR.
ONERRFLAG 23680 FFH=STOP, FEH=CONTINUE, else GO TO.
USER 23681 Not used.

ECHOE 23682 (2) 33 column number and 24 line number (in lower half) of
 end of input buffer.
DFCCU 23684 (2) Address in display file of upper window PRINT position.
DFCCL 23686 (2) Address in display file of lower window PRINT position.
SPOSNU 23688 (2) Upper window position as column/row.
SPOSNL 23690 (2) Lower window position as column/row.
SCRCT 23692 (2) Counter used to give “Scroll?” prompt.
ATTRP 23693 Attributes used by mode 0.
MASKP 23694 Mask used by mode 0. Bits which are 1 make the corresponding
 attribute bit be taken from the screen, not ATTRP.
ATTRT 23695 Temporary version of ATTRP.
MASKT 23696 Temporary versino of MASKP.
WORKSP 23649 (2) workspace start.
PFLAG 23697 Bit 4 and 5 are set for paper 9, bit 6 and 7 for pen 9.
MEMBOT 23698 (30) Calculator’s memory area.
NMIADD 23728 (2) Address to jump to when a peripheral activates the NMI.
RAMPTOP 23730 (2) Address of last byte of BASIC system area.
PRAMT 23732 (2) Address of last byte of physical RAM.

Flags
FLAGS
0 - set to prevent leading space
2 - set if last character detokenized was control code (temporary)
3 - set if 8-bit character set in use
5 - set if a key is pressed
6 - set if numeric result
7 - reset if checking syntax

DFLAG
0 - set when lower screen in use
3 - set if EDIT pressed
4 - set if automatic listing required
5 - set to clear lower screen

KLFLAG
0 - set to clear main screen
3 - set to enable caps lock
4 - set if K channel in use

FLAGE
0 - set if string
1 - set if variable
5 - set if INPUT mode
7 - set if INPUT line

ONERRFLAG
0-7 = set to STOP
1-6 = set to CONTINUE
6-7 = reset to GO TO

PFLAG
4 - set if pen 9
5 - set if pen 9
6 - set if paper 9
7 - set if paper 9

Error Reports
Codes refer to the equivalent SAM BASIC error report.

CODE ERROR REPORT

0 OK

No problems, successful completion, everything is OK.

1 Out of memory

There is not enough room in the computer's memory for what you want to do.

2 Undefined variable

The computer cannot find a variable, either because it has not yet been loaded, not
been assigned or set up, or you have not set its dimensions.

3 End of DATA

You are trying to READ past the end of the existing DATA listing.

4 Bad subscript

Either the number of subscripts is wrong or the subscript is outside the dimensions of
the array.

5 NEXT without FOR

Even though there is an ordinary variable with the same name, the control variable
has not yet been set up by a FOR statement.

6 FOR without NEXT

Even though there is a FOR loop waiting to run, there is no NEXT statement to go with
it.

7 Undefined FN
A user-defined function is missing.

8 RETURN without GO SUB
There is a RETURN statement without a GO SUB to welcome it back.

14 BREAK into program

BREAK has been hit in between two statements, and the line and statement number
that are shown refer to the statement before BREAK was used. When you CONTINUE,
the program goes to the statement that follows and allows for any program jumps that
you have made.

15 BREAK, CONTINUE repeats
BREAK has been hit while a peripheral operation was taking place, so when you
CONTINUE the last statement is repeated.

16 STOP statement

When you want to CONTINUE after this, the program will start again at the next
statement.

17 STOP in INPUT

When you want to CONTINUE after this, the program will start again by repeating the
last INPUT statement.

18 Bad filename

You are trying to SAVE a file but have forgotten to give it a name, or the name is
longer than 10 characters.

19 Loading error
 The file you want to LOAD has been found but there is something wrong with it and it

refuses to LOAD properly or fails to VERIFY. Check your cables, volume level, cassette
tape and dirty play-back heads of the cassette player.

20 Bad device

You are trying to SAVE or LOAD data, but you are using the wrong thing for
input/output (such as a disk drive instead of a cassette recorder), or have forgotten to
plug it in.

21 Bad stream

You are trying to use a stream number that is inappropriate. Streams 0 to 165 are the
paths to the various channels, e.g. 47 "K", "S", "R"; or you are trying to use a stream
number that is closed.

22 End of file

The end of a file has been reached, usually a disk file.

23 Bad colour

You have tried to specify a colour with a number that is not appropriate.

26 Parameter error

Either you have used the wrong number of arguments, or the wrong type of argument,
like a number instead of a string.

27 Bad argument

You are using an argument that is not suitable for the function you want.

28 Number too large

Your calculations have resulted in a number that is too enormous for the computer to
handle.

29 Syntax error

The computer is confused by your (mis)use of BASIC.

30 Integer out of range

A whole number (called an integer) is required, but the argument you are using has
been rounded to an integer that is outside of a suitable range.

31 Missing statement

The computer can't make a decision or obey an instruction without the necessary
statements. For example, you may have deleted statements after a GO SUB and then
RETURNed.

32 Off screen

The graphic requirements that you have asked for cannot fit on the screen.

33 No room for line

There is not enough room in the available memory for the line you are trying to insert,
or the line numbering requested in a RENUM is impossible.

48 Bad CLEAR address

You are trying to CLEAR with a number beyond the limits of memory allocated to
BASIC

