
A new Maxima package for dimensional
analysis

Barton Willis
University of Nebraska at Kearney

Kearney Nebraska

April 1, 2002

Introduction

This document demonstrates some of the abilities of a new Maxima package for
dimensional analysis. Maxima comes with an older package dimensional analy-
sis that is similar to the one that was in the commercial Macsyma system. The
software described in this document differs greatly from the older one.

The new dimensional analysis package was written by Barton Willis of the
University of Nebraska at Kearney. It is released under the terms of the General
Public License GPL. You may contact the author atwillisb@unk.edu.

Installation

To use this package, you must first download the filedimension.mac; it may be
found atwww.unk.edu/acad/math/people/willisb. After downloading, copy
it into a directory that Maxima can find.

Usage

To use the package, you must first load it. From a Maxima prompt, this is done
using the command

(c1) load("dimension.mac");

(d1)
dimen1.mac

1



To begin, we need to assign dimensions to the variables we want to use. Use the
qput function to do this; for example, to declarex a length,c a speed, andt a
time, use the commands

(c2) qput(x, "length", dimension)$

(c3) qput(c, "length" / "time", dimension)$

(c4) qput(t, "time", dimension)$

We’ve defined the dimensions length and time to be strings; doing so reduces the
chance that they will conflict with other user variables. To declare a dimensionless
variableσ, use 1 for the dimension. Thus

(c5) qput(sigma,1,dimension)$

To find the dimension of an expression, use thedimension function. For example

(c6) dimension(4 * sqrt(3) /t);

(d6)
1

time

(c7) dimension(x + c * t);

(d7)
length

(c8) dimension(sin(c * t / x));

(d8)
1

(c9) dimension(abs(x - c * t));

(d9)
length

(c10) dimension(sigma * x / c);

(d10)
time

2



(c11) dimension(x * sqrt(1 - c * t / x));

(d11)
length

dimension applieslogcontract to its argument; thus expressions involving a
difference of logarithms with dimensionally equal arguments are dimensionless;
thus

(c12) dimension(log(x) - log(c*t));

(d12)
1

dimension is automatically maps over lists. Thus

(c13) dimension([42, min(x,c*t), max(x,c*t), x^^4, x . c]);

(d13) [
1, length, length, length4,

length2

time

]
When an expression is dimensionally inconsistent,dimension should signal an
error

(c14) dimension(x + c);

Expression is dimensionally inconsistent.
(c15) dimension(sin(x));

Expression is dimensionally inconsistent.

An equationis dimensionally correct when either the dimensions of both sides
match or when one side of the equation vanishes. For example

(c16) dimension(x = c * t);

(d16)
length

(c17) dimension(x * t = 0);

(d17)
lengthtime

3



When the two sides of an equation have different dimensions and neither side
vanishes,dimension signals an error

(c18) dimension(x = c);

Expression is dimensionally inconsistent.

The functiondimension works with derivatives and integrals

(c19) dimension(’diff(x,t));

(d19)
length
time

(c20) dimension(’diff(x,t,2));

(d20)
length
time2

(c21) dimension(’diff(x,c,2,t,1));

(d21)
time

length

(c22) dimension(’integrate (x,t));

(d22)
lengthtime

Thus far, any string may be used as a dimension; the other three functions
in this package,dimension_as_list , dimensionless, andnatural_unit all
require that each dimension is a member of the listfundamental_dimensions.
The default value is of this list is

(c23) fundamental_dimensions;

(d23)
[mass, length, time]

A user may insert or delete elements from this list. The functiondimension_as_list

returns the dimension of an expression as a list of the exponents of the fundamen-
tal dimensions. Thus

4



(c24) dimension_as_list(x);

(d24)
[0,1,0]

(c25) dimension_as_list(t);

(d25)
[0,0,1]

(c26) dimension_as_list(c);

(d26)
[0,1,−1]

(c27) dimension_as_list(x/t);

(d27)
[0,1,−1]

(c28) dimension_as_list("temp");

(d28)
[0,0,0]

In the last example, ”temp” isn’t an element offundamental_dimensions; thus,
dimension_as_list reports that ”temp” is dimensionless. To correct this, ap-
pend ”temp” to the listfundamental_dimensions

(c29) fundamental_dimensions : endcons("temp", fundamental_dimensions);

(d29)
[mass, length, time, temp]

Now we have

(c30) dimension_as_list(x);

(d30)
[0,1,0,0]

5



(c31) dimension_as_list(t);

(d31)
[0,0,1,0]

(c32) dimension_as_list(c);

(d32)
[0,1,−1,0]

(c33) dimension_as_list(x/t);

(d33)
[0,1,−1,0]

(c34) dimension_as_list("temp");

(d34)
[0,0,0,1]

To remove ”temp” fromfundamental_dimensions, use thedelete command

(c35) fundamental_dimensions : delete("temp", fundamental_dimensions)$

The functiondimensionless finds abasisfor the dimensionless quantities
that can be formed from a list of dimensioned quantities. For example

(c36) dimensionless([c,x,t]);

Dependent equations eliminated: (1)
(d36) [ct

x
,1
]

(c37) dimensionless([x,t]);

Dependent equations eliminated: (1)
(d37)

[1]

6



In the first example, every dimensionless quantity that can be formed as a prod-
uct of powers ofc,x, andt is a power ofct/x; in the second example, the only
dimensionless quantity that can be formed fromx andt are the constants.

The functionnatural_unit(e,[v1,v2,...,vn]) finds powersp1, p2, . . . pn such
that

dimension(e) = dimension(vp1
1 vp2

2 . . .vpn
n ).

Simple examples are

(c38) natural_unit(x,[c,t]);

Dependent equations eliminated: (1)
(d38)

[ct]

(c39) natural_unit(x,[x,c,t]);

Dependent equations eliminated: (1)
(d39)

[x]

Here is a more complex example; we’ll study the Bohr model of the hydrogen
atom using dimensional analysis. To make things more interesting, we’ll include
the magnetic moments of the proton and electron as well as the universal gravita-
tional constant in with our list of physical quantities. Let ¯h be Planck’s constant,
e the electron charge,µe the magnetic moment of the electron,µp the magnetic
moment of the proton,me the mass of the electron,mp the mass of the proton,G
the universal gravitational constant, andc the speed of light in a vacuum. For this
problem, we might like to display the square root as an exponent instead of as a
radical; to do this, setsqrtdispflag to false

(c40) SQRTDISPFLAG : false$

Assuming a system of units where Coulomb’s law is

force=
product of charges

distance2
,

we have

(c41) qput(%hbar, "mass" * "length"^2 / "time",dimension)$

7



(c42) qput(%%e, "mass"^(1/2) * "length"^(3/2) / "time",dimension)$

(c43) qput(%mue, "mass"^(1/2) * "length"^(5/2) / "time",dimension)$

(c44) qput(%mup, "mass"^(1/2) * "length"^(5/2) / "time",dimension)$

(c45) qput(%me, "mass",dimension)$

(c46) qput(%mp, "mass",dimension)$

(c47) qput(%g, "length"^3 / ("time"^2 * "mass"), dimension)$

(c48) qput(%c, "length" / "time", dimension)$

The numerical values of these quantities may defined usingnumerval. We have

(c49) numerval(%%e, 1.5189073558044265d-14*sqrt(kg)*meter^(3/2)/sec)$

(c50) numerval(%hbar, 1.0545726691251061d-34*kg*meter^2/sec)$

(c51) numerval(%c, 2.99792458d8*meter/sec)$

(c52) numerval(%me, 9.1093897d-31*kg)$

(c53) numerval(%mp, 1.6726231d-27*kg)$

To begin, let’s use only the variablese,c,h̄,me, andmp to find the dimensionless
quantities. We have

(c54) dimensionless([%hbar, %me, %mp, %%e, %c]);

(d54) [
me

mp
,
ch̄
e2 ,1

]

The second element of this list is the reciprocal of the fine structure constant. To
find numerical values, usefloat

(c55) float(%);

(d55) [
5.4461699709874866×10−4,137.035990744505,1.0

]

The natural units of energy are given by

8



(c56) natural_unit("mass" * "length"^2 / "time"^2, [%hbar, %me, %mp, %%e, %c]);

(d56) [
c2me,

c3h̄mp

e2

]
Let’s see what happens when we include will includeµe,µp, andG. We have

(c57) dimensionless([%hbar, %%e, %mue, %mup, %me, %mp, %g, %c]);

(d57) [
µp

µe
,
c2meµe

e3 ,
c2mpµe

e3 ,
e4G
c4µ2

e
,
ch̄
e2 ,1

]

To find the natural units of mass, length, time, speed, force, and energy, use
the commands

(c58) natural_unit("mass", [%hbar, %%e, %me, %mp, %mue, %mup, %g, %c]);

(d58) [
mp,

c2m2
eµe

e3 ,
c2m2

eµp

e3 ,
Gm3

e

e2 ,
ch̄me

e2

]
(c59) natural_unit("length", [%hbar, %%e, %me, %mp, %mue, %mup, %g, %c]);

(d59) [
e2mp

c2m2
e
,
µe

e
,
µp

e
,
Gme

c2 ,
h̄

cme

]
(c60) natural_unit("time", [%hbar, %%e, %me, %mp, %mue, %mup, %g, %c]);

(d60) [
e2mp

c3m2
e
,
µe

ec
,
µp

ec
,
Gme

c3 ,
h̄

c2me

]
(c61) natural_unit("mass" * "length" / "time"^2, [%hbar, %%e, %me, %mp, %mue, %mup, %g, %c]);

9



(d61) [
c4memp

e2 ,
c6m3

eµe

e5 ,
c6m3

eµp

e5 ,
c4Gm4

e

e4 ,
c5h̄m2

e

e4

]
(c62) natural_unit("mass" * "length"^2 / "time"^2, [%hbar, %%e, %me, %mp, %mue, %mup, %g, %c]);

(d62) [
c2mp,

c4m2
eµe

e3 ,
c4m2

eµp

e3 ,
c2Gm3

e

e2 ,
c3h̄me

e2

]

The first element of this list is the rest mass energy of the proton.
The dimension package can handle vector operators such as dot and cross

products, and the vector operators div, grad, and curl. To use the vector operators,
we’ll first declare them

(c63) prefix(div)$

(c64) prefix(curl)$

(c65) infix("~")$

Let’s work with the electric and magnetic fields; again assuming a system of units
where Coulomb’s law is

force=
product of charges

distance2

the dimensions of the electric and magnetic field are
(c66) qput(e, sqrt("mass") / (sqrt("length") * "time"), dimension)$

(c67) qput(b, sqrt("mass") / (sqrt("length") * "time"),dimension)$

and the units of charge densityρ and current densityj are
(c68) qput(rho, sqrt("mass")/("time" * "length"^(3/2)), dimension)$

(c69) qput(j, sqrt("mass") / ("time"^2 * sqrt("length")), dimension)$

Finally, declare the speed of lightc as
(c70) qput(c, "length" / "time", dimension);

(d70)
length
time

10



Let’s find the dimensions of‖E‖2,E ·B,‖B‖2, andE×B/c. We have
(c71) dimension(e.e);

(d71)
mass

lengthtime2

(c72) dimension(e.b);

(d72)
mass

lengthtime2

(c73) dimension(b.b);

(d73)
mass

lengthtime2

(c74) dimension((e ~ b) / c);

(d74)
mass

length2 time

The physical significance of these quantities becomes more apparent if they are
integrated overR3. Defining

(c75) qput(v, "length"^3, dimension);

(d75)
length3

We now have
(c76) dimension(’integrate(e.e, v));

(d76)
length2mass

time2

(c77) dimension(’integrate(e.b, v));

(d77)
length2mass

time2

11



(c78) dimension(’integrate(b.b, v));

(d78)
length2mass

time2

(c79) dimension(’integrate((e ~ b) / c,v));

(d79)
lengthmass

time

It’s clear that‖E‖2,E ·B and‖B‖2 are energy densities whileE×B/c is a mo-
mentum density.

Let’s also check that the Maxwell equations are dimensionally consistent.
(c80) dimension(DIV(e)= 4*%pi*rho);

(d80)
mass

1
2

length
3
2 time

(c81) dimension(CURL(b) - ’diff(e,t) / c = 4 * %pi * j / c);

(d81)
mass

1
2

length
3
2 time

(c82) dimension(CURL(e) + ’diff(b,t) / c = 0);

(d82)
mass

1
2

length
3
2 time

(c83) dimension(DIV(b) = 0);

(d83)
mass

1
2

length
3
2 time

12



Conclusion and Future directions

Algorithmically, the dimensional analysis package is straightforward; neverthe-
less, there are many details, such as correctly setting option variables for linsolve,
that need to be tended to. Let me know when you find a bug; I’ll try to fix it. There
may be some operators that aren’t handled; again, let me know what is missing
and I’ll try to fix it.

Eventually, I hope that this package will work smoothly with the new physical
constants package.

I could add predefined dimensions for derived units such as momentum, charge,
density, etc.; however, given the plethora of schemes for electromagnetic units,
I’m hesitant to do this.

This documentation was processed by batTEX, a Maxima preprocessor for
TEX. The batTEXsoftware is also available from the author’s web page.

13


