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Abstract

The main result of this paper is the determination of all pairwise non-
isomorphic trade sets of volume at most 10 which can appear in Steiner
triple systems. We also enumerate partial Steiner triple systems having
at most 10 blocks as well as configurations with no points of degree 1 and
tradeable configurations having at most 12 blocks.
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1 Introduction

This paper is primarily concerned with trades in Steiner triple systems. The
results are mainly enumerative and were obtained by computational means.
However, for reasons which will become clear later, it is appropriate to consider
configurations more generally. We begin with some definitions.

A Steiner triple system of order v, briefly STS(v), is a pair (V,B) where V is
a base set of cardinality v of elements, or points, and B is a collection of triples,
also called blocks or lines, which has the property that every pair of distinct
elements of V occurs in precisely one triple. It is well known that an STS(v)
exists if and only if v ≡ 1 or 3 (mod 6).

An n-line configuration is a collection of n triples which has the property that
every pair of distinct elements occurs in at most one triple, i.e. a configuration
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is a partial Steiner triple system. In a configuration the degree of a point is the
number of triples which contain it.

A trade set, or n-way trade, T = {T1, T2, . . . , Tn}, n ≥ 2, is a set of pairwise
disjoint m-line configurations, Ti, which has the property that every pair of
distinct elements occurs in precisely the same number (zero or one) of triples
of each Ti. The number of lines, m, is called the volume of the trade set and
is denoted by vol(T ). The foundation of the trade set, found(T ), is the set of
elements covered by each Ti. A 2-way trade {T1, T2} is simply called a trade.
As is pointed out in Street [12], the single collection Ti is often referred to as
a trade. To our minds this usage is unfortunate and can be confusing. In this
paper we make the important distinction between a trade T and its constituent
configurations Ti: these configurations will be called tradeable configurations.
Clarity on this point is essential for accurate enumeration of such structures.
Some authors use the notation (T1, T2) for a 2-way trade, suggesting an ordered
pair, but we see no reason to depart from standard set notation.

Definition 1.1 Two trade sets T = {T1, T2, . . . , Tn1} and T ′ = {T ′
1, T

′
2, . . . , T

′
n2
}

are said to be isomorphic if
(i) vol(T ) = vol(T ′),
(ii) found(T ) = found(T ′),
(iii) n1 = n2 = n, and
(iv) there exists a function f : found(T ) → found(T ′) such that

f({T1, T2, . . . , Tn}) = {T ′
1, T

′
2, . . . , T

′
n}.

In Section 3, we enumerate all pairwise non-isomorphic tradeable configu-
rations and trade sets with volume at most 12 that can occur in Steiner triple
systems. Note that an n-way trade gives rise to

(
n
l

)
l-way trades for 2 ≤ l ≤ n.

However, some of these l-way trades may be isomorphic, and our computational
results reflect this. The present paper partly replicates some of the results in
Khosrovshahi & Maimani [8], where the numbers of such trades of volume at
most nine are given. Unfortunately, in that paper no mention is made of trade
sets and no distinction is made between trades and tradeable configurations.
However, when the volume exceeds eight the distinction between trades and
tradeable configurations becomes crucial. As we show in this paper there exist
trades of volume nine containing non-isomorphic tradeable configurations. Also
some of the numbers reported in [8] are incorrect; the subsequent paper [3] gives
different values for foundation size 9. Our results confirm these latter values.
Results for trade sets with volume at most 8 are also given in two earlier papers
by Lizzio & Milici [9, 10]. Here again there is an error; in the second paper the
two trades identified in Theorem 3.3 are in fact isomorphic and correspond to
number 10 in our Table 3.4. Trade sets of volume 9 were also enumerated in
Gionfriddo, Milici & Vacirca [4] but the list appears to be incomplete.

2 Algorithms

We begin this section with a few remarks about labellings.
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A labelling of a configuration C with point set V is a function φ which maps
V onto the set {0, 1, . . . , |V | − 1} of labels.

Following Colbourn & Rosa [1], we extend the usual ordering < of the inte-
gers to pairs of integers, triples and sets of triples. Pairs of integers are given
the reverse-lexicographical ordering; for a < b and c < d, {a, b} < {c, d} if b < d,
or b = d and a < c. Triples are ordered by their smallest pairs; if a < b < c
and d < e < f , then {a, b, c} < {d, e, f} if {a, b} < {d, e}, or {a, b} = {d, e} and
c < f . Two sets of triples, A and B, are ordered by the smallest triple in their
symmetric difference; thus A < B if the smallest triple in A \B is less than the
smallest triple in B \A.

A canonical labelling of a configuration C is a labelling φ for which φ(C) is
as small as possible. If two configurations have the same canonical labellings,
they are isomorphic, and the number of canonical labellings of C is equal to the
order of Aut(C), the group of automorphisms of C.

It is relatively straightforward to determine all trade sets T with vol(T ) ≤ 7
by elementary arguments, but after that the reasoning becomes rather tedious
and the subcases to be considered proliferate. Dealing with vol(T ) > 7 is a task
for a computer. Our main algorithm uses a simple back-tracking procedure to
generate all possible labelled trades {C,D} from a given labelled configuration
C. It is clear from the following presentation that it has the desired effect.

Algorithm 2.1 Suppose we are given a labelled configuration C with point set
V . Set L = {{r, s} : {r, s} is a pair in C} and set D = {}. Then we perform a
procedure called Add block to add triples one at a time to D.

Add block

Choose a pair {r, s} in L.

For each point t ∈ V \ {r, s} for which {r, s, t} is not a block in C and both
{r, t} and {s, t} are pairs in L:

Add {r, s, t} to D and remove the pairs {r, s}, {r, t}, {s, t} from L.

If L is empty, report a trade, {C,D}; otherwise perform the procedure
Add block.

Remove {r, s, t} from D and restore its pairs to L.

Return.

Clearly, Algorithm 2.1 presupposes that we have at our disposal a list con-
taining every tradeable configuration of n blocks. Therefore we first imple-
mented an algorithm to determine, for 1 ≤ n ≤ 10, all pairwise non-isomorphic
n-line configurations which can occur as blocks of a Steiner triple system. The
method is straightforward. We add a new line in every possible manner to every
(n−1)-line configuration and reject isomorphs using Miller’s algorithm [11]. As
described in Section 4.2 of Colbourn & Rosa [1], Miller’s algorithm constructs
canonical labellings for Steiner triple systems. Although we do not give details
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in this paper, we found it was necessary to implement a number of elementary
enhancements to make the algorithm work efficiently for configurations that are
not complete designs.

The numbers, C(n), of n-line configurations are known for 1 ≤ n ≤ 8
(Grannell & Griggs [5]) and so provide a check on the correctness of the pro-
gram. Also we would like to thank Professor C. J. Colbourn, who kindly made
available to us a list of all 6-, 7- and 8-line configurations thereby providing
independent verification of our computations for 6 ≤ n ≤ 8.

From this catalogue of configurations we then constructed all pairwise non-
isomorphic n-line configurations in which each point has degree at least 2. For
1 ≤ n ≤ 10, this is simply a matter of selecting the appropriate configurations
from the catalogue. For n = 11, 12 we used the elementary observation that any
10-line subconfiguration of an n-line configuration with the additional property
has at most 3(n − 10) points of degree 1. Hence we can begin with all 10-line
configurations containing at most 3(n− 10) points of degree 1, extend them in
every possible way so that every point has degree at least 2, and reject isomorphs.
We denote the number of these configurations by B(n).

There are two good reasons why it is relevant to identify configurations all of
whose points have degree at least 2. First, it is elementary that every point of a
tradeable configuration must have degree greater than 1, and a subcatalogue of
configurations with this property is a much smaller database to consider than
the catalogue of all configurations. Secondly, configurations in which every point
has degree at least 2 are interesting in their own right. This is due to a theorem,
proved in Horák, Phillips, Wallis & Yucas [7], that the number of occurrences of
any n-line configuration in an STS(v) can be expressed as a linear combination
of the number of occurrences of a single block and all m-line configurations,
1 ≤ m ≤ n, having all points of degree at least 2, where the coefficients are
polynomials in v.

Thus for 1 ≤ n ≤ 12 we were able to construct a list containing every
tradeable configuration of n blocks. By giving the points of these configurations
a canonical labelling and then applying Algorithm 2.1 we were therefore able
to create a list of the different labelled trades {C,D} that originate from each
canonically labelled tradeable configuration C.

3 Results

It is inappropriate, and indeed infeasible, to record all of our detailed results in
this paper. However, it is appropriate to summarize the results, give details of
trades of small volume and point to references where other information can be
obtained.

First, we give in Table 3.1, below, the number, C(n), of n-line configurations,
1 ≤ n ≤ 10, the number, B(n), of n-line configurations in which each point
has degree at least 2, 1 ≤ n ≤ 12 and the number, A(n), of n-line tradeable
configurations, 1 ≤ n ≤ 12.

Listings of all n-line configurations, together with formulae for their numbers
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of occurrence in terms of v (the order of the Steiner triple system), p (the number
of Pasch configurations), and m (the number of mitres) are given in Grannell,
Griggs & Mendelsohn [6] for 1 ≤ n ≤ 4 and Danziger, Mendelsohn, Grannell &
Griggs [2] for n = 5.

Table 3.1. Configuration counts
n 1 2 3 4 5 6 7 8
C(n) 1 2 5 16 56 282 1865 17100
B(n) 0 0 0 1 1 5 19 153
A(n) 0 0 0 1 0 2 2 10
n 9 10 11 12
C(n) 207697 3180571 - -
B(n) 1615 25180 479238 10695820
A(n) 17 102 436 3822

The n-line configurations in which each point has degree at least 2, 1 ≤ n ≤
7, are listed in Table 3.2. Set brackets and delimiting commas are omitted for
clarity. The configurations have canonical labellings with the blocks presented
in lexicographical order.

Table 3.2. Configurations with no points of degree 1

Lines Points

1 4 6 012 034 135 245 Pasch

2 5 7 012 034 135 236 456 mitre

3 6 7 012 034 135 146 236 245 semihead

4 6 8 012 034 135 147 236 567

5 6 8 012 034 135 246 257 367 6-cycle

6 6 9 012 034 135 267 468 578

7 6 9 012 034 156 278 357 468

8 7 7 012 034 056 135 146 236 245 STS(7)

9 7 8 012 034 057 135 146 236 247

10 7 8 012 034 135 147 236 257 456

11 7 9 012 034 058 135 147 236 678

12 7 9 012 034 135 147 168 236 578

13 7 9 012 034 135 147 236 258 678

14 7 9 012 034 135 147 236 468 578

15 7 9 012 034 078 135 236 457 468

16 7 9 012 034 135 178 236 457 468

17 7 9 012 034 067 135 168 245 278

18 7 9 012 034 067 135 168 245 378

19 7 9 012 034 067 135 168 245 478

20 7 9 012 034 078 135 168 246 257

21 7 9 012 034 135 168 246 257 378

22 7 10 012 034 067 135 268 479 589

23 7 10 012 034 067 135 268 489 579

24 7 10 012 034 135 236 478 579 689

25 7 10 012 034 078 135 246 579 689

26 7 10 012 034 135 178 246 579 689
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In Table 3.3 we denote by A(n, m) the number of n-line, m-point tradeable
configurations. Let L(n, m) denote the number of labelled (2-way) trades of
volume n and foundation m. In determining L(n, m) we take each tradeable
configuration C of n lines and m points, assign a fixed set of labels to the points
of C and count every possible (2-way) trade between C and labelled configu-
rations D. These are precisely the trades that are generated by Algorithm 2.1
and for given n and m they are not necessarily pairwise non-isomorphic.

Table 3.3. Counts of tradeable configurations and trade sets
Lines Points Non-isomorphic trades

n m A(n, m) L(n, m) 2-way 3-way 4-way
4 6 1 1 1 Pasch
6 7 1 2 1 1 semihead
6 8 1 1 1 6-cycle
7 7 1 8 1 STS(7)
7 9 1 1 1
8 8 1 3 1 1 1 (1)
8 9 3 3 3
8 10 4 4 4
8 11 1 1 1 (2)
8 12 1 1 1 (3)
9 9 7 11 7 3
9 10 7 8 5
9 11 3 3 2
10 9 3 12 3 1
10 10 37 51 29
10 11 39 43 34
10 12 19 21 18
10 13 3 4 3
10 14 1 1 1 (4)

134 179 117 6 1
(1) point-deleted STS(9)
(2) two Pasch configurations with a common point
(3) two disjoint Pasch configurations
(4) disjoint Pasch configuration and 6-cycle

In the Appendix, we present a table of the 35 pairwise non-isomorphic trade
sets of volume up to and including 9 (Table 3.4). The trades are arranged
by volume and then by foundation. The points are labelled with non-negative
integers; set brackets and commas have been omitted and labels 10 and 11
are represented by lower case Roman letters a and b, respectively. Each non-
isomorphic tradeable configuration is assigned a unique number in this table,
thus making it easy to distinguish between trades both of whose configurations
are isomorphic and trades where the configurations are non-isomorphic.

The 35 trade sets consist of 29 2-way trade sets, five 3-way trade sets and one
4-way trade set. There is a small amount of duplication; for k > 2 the pairwise
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nonisomorphic (k − 1)-way subsets of a k-way trade set appear as separate
entries in the list. But this seems the clearest way to present the results. Thus
the (2-way) trades numbered 2, 22, 24 and 27 in the list are subtrades of the
3-way trade sets numbered 3, 23, 25 and 28, respectively, and the (2-way) trade
number 7 is a subtrade of the 3-way trade number 8 which in turn is a subtrade
of the 4-way trade number 9. In Table 3.4 the first configuration in each trade
set has a canonical labelling with the blocks presented in lexicographical order.

There are 89 trade sets of volume 10, all but one of which are 2-way. Of
these, 72 trade sets are between isomorphic configurations and 16 between non-
isomorphic configurations. But the 3-way trade set is of particular interest. The
three tradeable configurations are:

(i) 012 034 057 068 135 146 178 236 247 258
(ii) 013 026 047 058 124 157 168 235 278 346
(iii) 018 027 035 046 125 136 147 234 268 578

Configurations (ii) and (iii) are isomorphic but are not isomorphic to configura-
tion (i). The 3-way trade set gives rise to two 2-way trade sets, one between iso-
morphic tradeable configurations ((ii) and (iii)) and one between non-isomorphic
tradeable configurations ((i) and (ii)).

Another interesting situation occurs with the three following non-isomorphic
tradeable configurations.

(iv) 012 034 057 068 135 146 236 245 569 789
(v) 013 025 046 078 126 145 234 356 579 689
(vi) 014 023 056 078 125 136 246 345 579 689

There are 2-way trade sets between configurations (iv) and (v) and between (iv)
and (vi) but not between configurations (v) and (vi). Hence the 2-way trade sets
do not extend to a 3-way trade set. A full listing of the trade sets of volume 10
is available from the authors, and will appear in the first author’s Ph.D. thesis.
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Table 3.4. Pairwise non-isomorphic trade sets
Lines Points Config.

1 4 6 1 012 034 135 245
1 013 024 125 345

2 6 7 2 012 034 135 146 236 245
2 013 024 126 145 235 346

3 6 7 2 012 034 135 146 236 245
2 013 024 126 145 235 346
2 014 023 125 136 246 345

4 6 8 3 012 034 135 246 257 367
3 013 024 125 267 346 357

5 7 7 4 012 034 056 135 146 236 245
4 013 025 046 126 145 234 356

6 7 9 5 012 034 067 135 168 245 378
5 016 024 037 125 138 345 678

7 8 8 6 012 034 067 135 147 236 257 456
6 013 026 047 127 145 235 346 567

8 8 8 6 012 034 067 135 147 236 257 456
6 013 026 047 127 145 235 346 567
6 014 027 036 123 157 256 345 467

9 8 8 6 012 034 067 135 147 236 257 456
6 013 026 047 127 145 235 346 567
6 014 027 036 123 157 256 345 467
6 017 023 046 125 134 267 356 457

10 8 9 7 012 034 057 135 146 236 278 568
7 014 027 035 123 156 268 346 578

11 8 9 8 012 034 135 146 178 236 247 258
8 013 024 126 147 158 235 278 346

12 8 9 9 012 034 135 147 236 258 378 468
9 014 023 125 137 268 346 358 478

13 8 10 10 012 034 135 146 178 236 379 589
10 014 023 126 137 158 346 359 789

14 8 10 11 012 034 067 089 135 245 568 579
11 013 024 068 079 125 345 567 589

15 8 10 12 012 034 135 246 257 289 368 379
12 013 024 125 268 279 346 357 389

16 8 10 13 012 034 135 246 257 368 589 679
13 013 024 125 267 346 358 579 689

17 8 11 14 012 034 067 089 135 245 68a 79a
14 013 024 068 079 125 345 67a 89a

18 8 12 15 012 034 135 245 678 69a 79b 8ab
15 013 024 125 345 679 68a 78b 9ab
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Lines Points Config.
19 9 9 16 012 034 057 068 135 146 178 236 245

16 013 026 045 078 124 157 168 235 346
20 9 9 17 012 034 057 135 146 236 247 258 378

17 014 027 035 125 136 238 246 347 578
21 9 9 18 012 034 057 135 146 236 247 258 678

18 014 027 035 125 136 234 268 467 578
22 9 9 19 012 034 058 135 147 236 278 468 567

19 014 028 035 123 157 267 346 478 568
23 9 9 19 012 034 058 135 147 236 278 468 567

19 014 028 035 123 157 267 346 478 568
19 015 023 048 127 134 268 356 467 578

24 9 9 20 012 034 058 135 147 236 248 257 456
20 014 028 035 123 157 247 256 346 458

25 9 9 20 012 034 058 135 147 236 248 257 456
20 014 028 035 123 157 247 256 346 458
20 015 023 048 127 134 246 258 356 457

26 9 9 21 012 034 078 135 147 236 258 468 567
21 017 023 048 125 134 268 356 467 578

27 9 9 22 012 034 078 135 168 246 257 367 458
22 013 027 048 126 158 245 346 357 678

28 9 9 22 012 034 078 135 168 246 257 367 458
22 013 027 048 126 158 245 346 357 678
22 018 024 037 125 136 267 345 468 578

29 9 10 23 012 034 057 135 146 178 236 279 389
24 014 027 035 126 138 157 239 346 789

30 9 10 25 012 034 057 135 146 178 236 279 689
25 014 027 035 123 157 168 269 346 789

31 9 10 26 012 034 078 135 146 179 236 245 389
27 017 024 038 126 139 145 235 346 789

32 9 10 28 012 034 058 069 135 147 189 236 379
28 014 026 035 089 123 158 179 347 369

33 9 10 29 012 034 058 135 147 236 289 469 579
29 014 028 035 123 157 269 346 479 589

34 9 11 30 012 034 067 135 168 245 379 38a 69a
31 016 024 037 125 138 345 39a 679 68a

35 9 11 32 012 034 135 246 257 39a 489 58a 678
32 013 024 125 267 349 35a 468 578 89a
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