
OWASP ESAPI for Java Security Bulletin #2 The OWASP Foundation

How Does CVE-2019-17571 Impact ESAPI?
Kevin W. Wall <kevin.w.wall@gmail.com>

Summary

Category: Java deserialization issue, leading to potential code injection.

Module:
Log4J 1 – a dependency used by ESAPI (specifically Log4J 1.2.17 in the
latest ESAPI version) to support “safe logging”.

Announced:
2020-01-08 via ESAPI User Google Group
(https://groups.google.com/a/owasp.org/forum/#!topic/esapi-project-users/
XxKBjj3HuSw)

Credits:
• Dennis Bakker for first bringing this to our attention. (He beat the

GitHub security bulletin by 4 days!)
• Eddy Vos for suggesting a practical workaround for ESAPI users.

Affects: All versions of ESAPI 2.x and all versions of ESAPI 1.x (no longer supported)

Details: Not exploitable as used by ESAPI. See discussion below.

GitHub
Issue #:

534 (https://github.com/ESAPI/esapi-java-legacy/issues/534)

CWE: CWE-502 (Deserialization of Untrusted Data)

CVE
Identifier:

CVE-2019-17571

CVSS
Severity
(version
3.1)

CVSS v3.1 Base Score: 9.8 (critical)
 Impact Subscore: 5.9
 Exploitability Subscore: 3.9
CVSS Vector CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Background
OWASP ESAPI (the OWASP Enterprise Security API) is a free, open source, web application
security control library that makes it easier for programmers to write lower-risk
applications. The ESAPI for Java library is designed to make it easier for programmers to
retrofit security into existing applications. ESAPI for Java also serves as a solid foundation
for new development.

One of the security controls provided by ESAPI for Java is its provision for “safe logging”
which is designed as a defense against “CWE-117: Improper Output Neutralization for
Logs”. Traditionally, ESAPI 1.2 and 2.x, ESAPI has supported both Java’s standard
java.util.logging (henceforth referred to as JUL) and Apache’s Log4J 1.x. In ESAPI 2.2.0.0,

mailto:kevin.w.wall@gmail.com
https://www.owasp.org/
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/117.html
https://owasp.org/www-project-enterprise-security-api/
https://github.com/ESAPI/esapi-java-legacy/issues/534
https://nvd.nist.gov/vuln/detail/CVE-2019-17571

support for SLF4J was added. For versions of ESAPI, up through and including ESAPI
2.2.0.0, the default configuration for ESAPI has been to use Log4J 1.x and Log4J’s
ConsoleAppender. For release 2.2.1.0, the default ESAPI logger was changed to use JUL. It
should be noted that this decision to use JUL was made prior to the ESAPI development
team becoming aware of this CVE in question. We switched to making JUL ESAPI’s default
logger shortly after Jeremiah Stacey added some important missing functionality to
ESAPI’s JUL support to bring it more in line with ESAPI’s Log4J logging format. Thus the
reason for the decision was not because of this Log4J CVE though; rather it was made
simply on the basis of Apache Log4J 1 being significantly past end-of-life and no longer
being supported.

Also, as of ESAPI 2.2.1.0, ESAPI has annotated all ESAPI Log4J-related classes as
‘@deprecated’. However, ESAPI’s deprecation policy is that the ESAPI development would
not delete any classes, methods, or fields marked as ‘@deprecated’ until either 2 years
had passed since the first release when that annotation was added or in the next major
release number (which, in this case, would be 3.0). This is ESAPI’s promise to try to give
development teams adequate prior warning before doing something that might break
backward compatibility for ESAPI users in their application code.

Problem Description
According to the description in NIST’s National Vulnerability Database (NVD), the current
description for CVE-2019-17571 states:

“Included in Log4J 1.2 is a SocketServer class that is vulnerable to deserialization of
untrusted data which can be exploited to remotely execute arbitrary code when
combined with a deserialization gadget when listening to untrusted network traffic
for log data. This affects Log4J versions up to 1.2 up to 1.2.17. “(sic)

So the real question that everyone is asking is will using ESAPI leave my application code
exposed to CVE-2019-17571 in a manner that makes this CVE exploitable? That is the
question this analysis attempts to answer, but the TL;DR answer for those of you not
interested in the details is, “No, the ESAPI development team believes that ESAPI’s use of
Log4J 1 does would not leave your application code using ESAPI exposed to CVE-2019-
17571 in a manner that would make it exploitable”.

Apache Log4J’s SocketServer is a class that is intended for listening for (presumably) Log4J
log events and centrally collecting them. ESAPI does not use this Apache Log4J class at all
nor any other server-side Log4J class. By default, ESAPI internally only uses the following
Log4J classes:

• org.apache.log4j.Level
• org.apache.log4j.Logger
• org.apache.log4j.Priority
• org.apache.log4j.spi.LoggerFactory
• org.apache.log4j.xml.DOMConfigurator

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/xml/DOMConfigurator.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/spi/LoggerFactory.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Priority.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Logger.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/SocketServer.html
https://nvd.nist.gov/vuln/detail/CVE-2019-17571#vulnCurrentDescriptionTitle
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html
http://www.slf4j.org/

plus Log4J’s org.apache.log4j. ConsoleAppender class which is configured as the default
Log4J appender class in “configuration/log4j.xml”, which is provided as an example Log4j
configuration and which most likely would be replaced by some type of FileAppender root
logger in the application actually using ESAPI.

None of these Log4J 1 classes use the vulnerable org.apache.log4j.net.SocketServer class,
nor do they use any Log4J classes that use the SocketServer class. A manual code
inspection of the log4j 1.2.17 code from GitHub reveals that the only non-test / non-
documentation files from the Apache log4j 1.2.17 release (which is the latest Log4J 1
release available in Maven Central) that references the vulnerable SocketServer class are
these files:

• src/main/java/org/apache/log4j/net/SimpleSocketServer.java
• src/main/java/org/apache/log4j/net/SocketServer.java
• contribs/MarkDouglas/SocketServer2.java
• examples/lf5/UsingSocketAppenders/UsingSocketAppenders.java
• examples/sort3.properties

Thus, our conclusion is, if you refrain from using Apache Log4J’s SocketServer or any of
the above classes, your application should not be exploitable based on how ESAPI uses
Apache Log4J 1. (Of course, how your own application code uses Log4J directly or via some
other library is another matter entirely and outside the scope of this ESAPI security
bulletin.)

Despite that, the ESAPI development team still advises against configuring ESAPI.Logger
to use Log4J 1. That is why now we have deprecated the use of Log4J 1 in ESAPI. The mere
fact that Log4J 1.x is unsupported means that there will be no further security patches for
it and the next one that does appear in Log4J 1 conceivably could be exploitable through
ESAPI.

Impact
So, if ESAPI does not expose an exploitable path to CVE-2019-17571, what then is the
concern? The problem as we see it, and likely how many in the ESAPI users community
view it, is that Software Composition Analysis (SCA) tools and/or services like OWASP
Dependency Check, BlackDuck, Snyk, Veracode's SourceClear, GitHub, etc. will continue to
give you warnings that you may be required to explain to your management in order to
justify continue using ESAPI in your application.

Removing support for Log4J 1 completely from ESAPI would be in conflict with ESAPI’s
deprecation policy, which is now officially described in ESAPI’s README.md file, but which
has long been our unofficial policy dating back to ESAPI 2.0.0.0. However, if you are able
to use JUL or SLF4J for ESAPI logging, there is a workaround described in the next section.

If as an ESAPI user, you absolutely must continue to use ESAPI’s Log4J 1’s logger for
compatibility with the rest of your application using Log4J 1.x, there is absolutely nothing
you can do short of perhaps showing your management this security bulletin. (Of course, if

https://github.com/ESAPI/esapi-java-legacy/blob/develop/README.md
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/SocketServer.html
https://github.com/apache/log4j/blob/v1_2_17/examples/sort3.properties
https://github.com/apache/log4j/blob/v1_2_17/examples/lf5/UsingSocketAppenders/UsingSocketAppenders.java
https://github.com/apache/log4j/blob/v1_2_17/contribs/MarkDouglas/SocketServer2.java
https://github.com/apache/log4j/blob/v1_2_17/src/main/java/org/apache/log4j/net/SocketServer.java
https://github.com/apache/log4j/blob/v1_2_17/src/main/java/org/apache/log4j/net/SimpleSocketServer.java
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/SocketServer.html
https://github.com/apache/log4j/tree/v1_2_17
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/SocketServer.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/net/SocketServer.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/FileAppender.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html

your application has Log4J 1 as a direct dependency which you can’t eliminate, it matters
little that it is a transitive dependency to your application through ESAPI.)

Workaround
If you are okay with configuring ESAPI logging to use either JUL (which is the new ESAPI
default starting with the [not-yet-released] ESAPI 2.2.1.0 release) or SLF4J (through which
you could support Log4J 2), you can use the following (or similar) workaround when
building your project, first suggested by Eddy Vos here.

First, in your application’s ESAPI.properties file, change the value for the ESAPI.Logger
property. To change ESAPI logging to use JUL, change that property to

org.owasp.esapi.reference.JavaLogFactory

if you are using a version of ESAPI version of 2.2.0.0 or earlier, or to

org.owasp.esapi.logging.java.JavaLogFactory

if you are using a version of ESAPI later than 2.2.0.0. To configure it to use SLF4J, change
that property value to

org.owasp.esapi.logging.slf4j.Slf4JLogFactory

Note that starting with 2.2.1.0, the ESAPI sample configuration file under

configuration/esapi/ESAPI.properties

is configured to use JUL as the default ESAPI logger.

Second, in your application’s pom.xml, reference your dependency on the ESAPI jar in this
manner:

 <dependency>
 <groupId>org.owasp.esapi</groupId>
 <artifactId>esapi</artifactId>
 <version>2.2.0.0</version>
 <exclusions>
 <exclusion>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

(Or whatever version of ESAPI you are using; hopefully the latest version.) When you then
build your project, this should exclude the log4j jar from your classpath. (Note that you do
not have to specify a ‘version’.) Note that this of course will only work if you have no other
direct or transitive dependencies on Log4J 1.x.

https://github.com/ESAPI/esapi-java-legacy/issues/534#issuecomment-578065730

You can also exclude specific transitive dependencies using Gradle. If you use Grade,
follow these general instructions.

Note that using this workaround with SLF4J requires ESAPI 2.2.0.0 or later; however, you
should be able to use this for any version of ESAPI 2.x if you are willing to use JUL for ESAPI
logging. (Note that if you switch to using JUL for ESAPI versions prior to 2.2.1.0, the logging
output will like slightly different than what you get with it configured to use Log4J 1, but it
will still do “safe” logging.)

Solution
The only “real” solution to this is to have OWASP ESAPI completely remove Log4J 1 as a
dependency. In release 2.2.1.0 it has been deprecated so we cannot remove it
immediately and continue to honor our deprecation policy until either two years from the
(to-be-determined) 2.2.1.0 release date or in the next major release of ESAPI (which will
be 3.0). ESAPI 3.0 is currently only in planning stages. Until then you will either have to
live with the workaround or accept the warnings from various SCA scanners. If you decide
to live with the SCA scanner warnings, perhaps you can show your management this ESAPI
security bulletin to convince them that using ESAPI does not make CVE-2019-17571
exploitable to your application because of the restricted way that ESAPI uses Log4J 1
classes.

Additional Precautions
Run OWASP Dependency Check or a similar SCA tool or service on your final project
configuration to ensure that you have no Log4J 1 dependencies in your application’s class
path.

Acknowledgments
Kudos to Dennis Bakker for following the steps in the ESAPI README.md in GitHub about
reporting potential vulnerabilities and sending the ESAPI project leaders a direct email
rather than posting to a public forum. A special hat tip to him for notifying us 4 days
before I received a notification from GitHub itself.

Also special recognition to Eddy Vos for suggesting a rather simple workaround that
excludes ESAPI’s use Apache Log4J 1’s logger as mentioned in GitHub Issue 534.

References
https://nvd.nist.gov/vuln/detail/CVE-2019-17571

GitHub Issue #534 (https://github.com/ESAPI/esapi-java-legacy/issues/534)

GitHub Issue #538 (https://github.com/ESAPI/esapi-java-legacy/issues/538)

https://github.com/ESAPI/esapi-java-legacy/issues/538
https://github.com/ESAPI/esapi-java-legacy/issues/534
https://github.com/ESAPI/esapi-java-legacy/issues/534
https://discuss.gradle.org/t/how-do-i-exclude-specific-transitive-dependencies-of-something-i-depend-on/17991

	Summary
	Background
	Problem Description
	Impact
	Workaround
	Solution
	Additional Precautions
	Acknowledgments
	References

