
DSC Manual

Duane Wessels, Measurement Factory
Ken Keys, CAIDA

http://dns.measurement-factory.com/tools/dsc/

June 6, 2011

0.1 Copyright

The DNS Statistics Collector (dsc)

Copyright 2007 by The Measurement Factory, Inc. and Internet Systems
Consortium, Inc.

info@measurement-factory.com, info@isc.org

0.2 License

dsc is licensed under the terms of the BSD license:

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with
the distribution. Neither the name of The Measurement Factory nor the names
of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

0.3 Contributors

• Duane Wessels, Measurement Factory

• Ken Keys, Cooperative Association for Internet Data Analysis

2

Contents

0.1 Copyright . 1
0.2 License . 1
0.3 Contributors . 2

1 Introduction 3
1.1 Components . 3

1.1.1 The Collector . 3
1.1.2 XML Data Transfer . 4
1.1.3 The Extractor . 4
1.1.4 The Grapher . 4

1.2 Architecture . 5

2 Installing the Presenter 6
2.1 Install Perl Dependencies . 6
2.2 Install Ploticus . 7
2.3 Install dsc Software . 7
2.4 CGI Symbolic Links . 7
2.5 /usr/local/dsc/data . 8

2.5.1 X.509 method . 8
2.5.2 rsync Method . 8

2.6 /usr/local/dsc/var/log . 9
2.7 /usr/local/dsc/cache . 9
2.8 Cron Jobs . 9
2.9 Data URIs . 10

3 Configuring the dsc Presenter 11
3.1 Generating X.509 Certificates . 11

3.1.1 Certificate Authority . 11
3.1.2 Server Certificate . 12

3.2 Client Certificates . 13
3.3 Apache Configuration . 15

4 Collector Installation 16
4.1 Prerequisites . 16
4.2 Installation . 16

1

4.3 Uploading XML Files . 17
4.3.1 upload-x509.sh . 18
4.3.2 upload-rsync.sh . 18

5 Configuring and Running the dsc Collector 20
5.1 dsc.conf . 20
5.2 A Complete Sample dsc.conf . 21
5.3 Running dsc . 22

6 Viewing dsc Graphs 23

7 dsc Datasets 26
7.1 Dataset Name . 26
7.2 Protocol . 27
7.3 Indexers . 27

7.3.1 IP Indexers . 27
7.3.2 IP Filters . 28
7.3.3 DNS Indexers . 28
7.3.4 DNS Filters . 31
7.3.5 Parameters . 32

8 Data Storage 33
8.1 XML Structure . 33

8.1.1 XML File Naming Conventions 35
8.2 Archived Data Format . 35

8.2.1 Format 1 . 35
8.2.2 Format 2 . 36
8.2.3 Format 3 . 36
8.2.4 Format 4 . 36

9 Bugs 38

2

Chapter 1

Introduction

dsc is a system for collecting and presenting statistics from a busy DNS server.

1.1 Components

dsc consists of the following components:

• A data collector

• A data presenter, where data is archived and rendered

• A method for securely transferring data from the collector to the presenter

• Utilities and scripts that parse XML and archive files from the collector

• Utilities and scripts that generate graphs and HTML pages

1.1.1 The Collector

The collector is a binary program, named dsc, which snoops on DNS messages.
It is written in C and uses libpcap for packet capture.

dsc uses a relatively simple configuration file called dsc.conf to define certain
parameters and options. The configuration file also determines the datasets that
dsc collects.

A Dataset is a 2-D array of counters of IP/DNS message properties. You
can define each dimension of the array independently. For example you might
define a dataset categorized by DNS query type along one dimension and TLD
along the other. dsc dumps the datasets from memory to XML files every 60
seconds.

3

1.1.2 XML Data Transfer

You may run the dsc collector on a remote machine. That is, the collector
may run on a different machine than where the data is archived and displayed.
dsc includes some Perl and /bin/sh scripts to move XML files from collector
to presenter. One technique uses X.509 certificates and a secure HTTP server.
The other uses rsync, presumably over ssh.

X.509/SSL

To make this work, Apache/mod ssl should run on the machine where data is
archived and presented. Data transfer is authenticated via SSL X.509 certifi-
cates. A Perl CGI script handles all PUT requests on the server. If the client
certificate is allowed, XML files are stored in the appropriate directory.

A shell script runs on the collector to upload the XML files. It uses curl1

to establish an HTTPS connection. XML files are bundled together with tar

before transfer to eliminate per-connection delays. You could use scp or rsync
instead of curl if you like.

put-file.pl is the script that accepts PUT requests on the HTTP server.
The HTTP server validates the client’s X.509 certificate. If the certificate is
invalid, the PUT request is denied. This script reads environment variables to
get X.509 parameters. The uploaded-data is stored in a directory based on the
X.509 Organizational Unit (server) and Common Name fields (node).

rsync/ssh

This technique uses the rsync utility to transfer files. You’ll probably want to
use ssh as the underlying transport, although you can still use the less-secure
rsh or native rsync server transports if you like.

If you use ssh then you’ll need to create passphrase-less SSH keys so that the
transfer can occur automatically. You may want to create special dsc userids
on both ends as well.

1.1.3 The Extractor

The XML extractor is a Perl script that reads the XML files from dsc. The
extractor essentially converts the XML-structured data to a format that is easier
(faster) for the graphing tools to parse. Currently the extracted data files are
line-based ASCII text files. Support for SQL databases is planned for the future.

1.1.4 The Grapher

dsc uses Ploticus2 as the graphing engine. A Perl module and CGI script read
extracted data files and generate Ploticus scriptfiles to generate plots. Plots are
always generated on demand via the CGI application.

1http://curl.haxx.se
2http://ploticus.sourceforge.net/

4

PUTs
HTTPS

Collectors

DISPLAY
(extractor) (grapher)

Presenter

SERVER1

node3node1

SERVER2

node2

STORAGE

node2 node3node1

Figure 1.1: The dsc architecture.

dsc-grapher.pl is the script that displays graphs from the archived data.

1.2 Architecture

Figure 1.1 shows the dsc architecture.
Note that dsc utilizes the concept of servers and nodes . A server is generally

a logical service, which may actually consist of multiple nodes. Figure 1.1 shows
six collectors (the circles) and two servers (the rounded rectangles). For a real-
world example, consider a DNS root server. IP Anycast allows a DNS root
server to have geographically distributed nodes that share a single IP address.
We call each instance a node and all nodes sharing the single IP address belong
to the same server .

The dsc collector program runs on or near3 the remote nodes. Its XML out-
put is transferred to the presentation machine via HTTPS PUTs (or something
simpler if you prefer).

The presentation machine includes an HTTP(S) server. The extractor looks
for XML files PUT there by the collectors. A CGI script also runs on the HTTP
server to display graphs and other information.

3by “near” we mean that packets may be sniffed remotely via Ethernet taps, switch port
mirroring, or a SPAN port.

5

Chapter 2

Installing the Presenter

You’ll probably want to get the Presenter working before the Collector. If you’re
using the secure XML data transfer, you’ll need to generate both client- and
server-side X.509 certificates.

Installing the Presenter involves the following steps:

• Install Perl dependencies

• Install dsc software

• Create X.509 certificates (optional)

• Set up a secure HTTP server (e.g., Apache and mod ssl)

• Add some cron jobs

2.1 Install Perl Dependencies

dsc uses Perl for the extractor and grapher components. Chances are that you’ll
need Perl-5.8, or maybe only Perl-5.6. You’ll also need these readily available
third-party Perl modules, which you can find via CPAN:

• CGI-Untaint (CGI::Untaint)

• CGI.pm (CGI)

• Digest-MD5 (Digest::MD5)

• File-Flock (File::Flock)

• File-Spec (File::Spec)

• File-Temp (File::Temp)

• Geography-Countries (Geography::Countries)

• Hash-Merge (Hash::Merge)

• IP-Country (IP::Country)

• MIME-Base64 (MIME::Base64)

6

• Math-Calc-Units (Math::Calc::Units)

• Scalar-List-Utils (List::Util)

• Text-Template (Text::Template)

• URI (URI::Escape)

• XML-Simple (XML::Simple)

• Net-DNS-Resolver (Net::DNS::Resolver)

Also note that XML::Simple requires XML::Parser, which in turn requires the
expat package.

2.2 Install Ploticus

dsc uses Ploticus to generate plots and graphs. You can find this software
at http://ploticus.sourceforge.net. The Download page has links to some
pre-compiled binaries and packages. FreeBSD and NetBSD users can find Ploti-
cus in the ports/packages collection.

2.3 Install dsc Software

All of the extractor and grapher tools are Perl or /bin/sh scripts, so there is
no need to compile anything. Still, you should run make first:

% cd presenter

% make

If you see errors about missing Perl prerequisites, you may want to correct
those before continuing.

The next step is to install the files. Recall that /usr/local/dsc is the
hard-coded installation prefix. You must create it manually:

% mkdir /usr/local/dsc

% make install

Note that dsc’s Perl modules are installed in the “site perl” directory. You’ll
probably need root privileges to install files there.

2.4 CGI Symbolic Links

dsc has a couple of CGI scripts that are installed into /usr/local/dsc/libexec.
You should add symbolic links from your HTTP server’s cgi-bin directory to
these scripts.

Both of these scripts have been designed to be mod perl-friendly.

7

% cd /usr/local/apache/cgi-bin

% ln -s /usr/local/dsc/libexec/put-file.pl

% ln -s /usr/local/dsc/libexec/dsc-grapher.pl

You can skip the put-file.pl link if you plan to use rsync to transfer XML
files. If you cannot create symbolic links, you’ll need to manually copy the
scripts to the appropriate directory.

2.5 /usr/local/dsc/data

2.5.1 X.509 method

This directory is where put-file.pl writes incoming XML files. It should
have been created when you ran make install earlier. XML files are actually
placed in server and node subdirectories based on the authorized client X.509
certificate parameters. If you want put-file.pl to automatically create the
subdirectories, the data directory must be writable by the process owner:

% chgrp nobody /usr/local/dsc/data/

% chmod 2775 /usr/local/dsc/data/

Alternatively, you can create server and node directories in advance and
make those writable.

% mkdir /usr/local/dsc/data/x-root/

% mkdir /usr/local/dsc/data/x-root/blah/

% mkdir /usr/local/dsc/data/x-root/blah/incoming/

% chgrp nobody /usr/local/dsc/data/x-root/blah/

% chmod 2775 /usr/local/dsc/data/x-root/blah/incoming/

Make sure that /usr/local/dsc/data/ is on a large partition with plenty
of free space. You can make it a symbolic link to another partition if necessary.
Note that a typical dsc installation for a large DNS root server requires about
4GB to hold a year’s worth of data.

2.5.2 rsync Method

The directory structure is the same as above (for X.509). The only differences
are that:

• The server , node, and incoming directories must be made in advance.

• The directories should be writable by the userid associated with the rsync/ssh
connection. You may want to create a dedicated dsc userid for this.

8

2.6 /usr/local/dsc/var/log

The put-file.pl script logs its activity to put-file.log in this directory. It
should have been created when you ran make install earlier. The directory
should be writable by the HTTP server userid (usually nobody or www). Un-
fortunately the installation isn’t fancy enough to determine that userid yet, so
you must change the ownership manually:

% chgrp nobody /usr/local/dsc/var/log/

Furthermore, you probably want to make sure the log file does not grow
indefinitely. For example, on FreeBSD we add this line to /etc/newsyslog.

conf:

/usr/local/dsc/var/log/put-file.log nobody:wheel 644 10 * @T00 BN

You need not worry about this directory if you are using the rsync upload
method.

2.7 /usr/local/dsc/cache

This directory, also created by make install above, holds cached plot images. It
also must be writable by the HTTP userid:

% chgrp nobody /usr/local/dsc/cache/

2.8 Cron Jobs

dsc requires two cron jobs on the Presenter. The first is the one that processes
incoming XML files. It is called refile-and-grok.sh. We recommend running
it every minute. You also may want to run the jobs at a lowerer priority with
nice. Here is the cron job that we use:

* * * * * /usr/bin/nice -10 /usr/local/dsc/libexec/refile-and-grok.sh

The other useful cron script is remove-xmls.pl. It removes XML files older
than a specified number of days. Since most of the information in the XML files
is archived into easier-to-parse data files, you can remove the XML files after a
few days. This is the job that we use:

@midnight find /usr/local/dsc/data/ | /usr/local/dsc/libexec/remove-xmls.pl 7

9

2.9 Data URIs

dsc uses “Data URIs” by default. This is a URI where the content is base-64
encoded into the URI string. It allows us to include images directly in HTML
output, such that the browser does not have to make additional HTTP requests
for the images. Data URIs may not work with some browsers.

To disable Data URIs, edit presenter/perllib/DSC/grapher.pm and change
this line:

$use_data_uri = 1;

to

$use_data_uri = 0;

Also make this symbolic link from your HTTP servers “htdocs” directory:

cd htdocs

ln -s /usr/local/dsc/share/html dsc

10

Chapter 3

Configuring the dsc

Presenter

This chapter describes how to create X.509 certificates and configure Apache/mod ssl.
If you plan on using a different upload technique (such as scp or rsync) you can
skip these instructions.

3.1 Generating X.509 Certificates

We use X.509 certificates to authenticate both sides of an SSL connection when
uploading XML data files from the collector to the presenter.

Certificate generation is a tricky thing. We use three different types of
certificates:

1. A self-signed root CA certificate

2. A server certificate

3. Client certificates for each collector node

In the client certificates we use X.509 fields to store the collector’s server
and node name. The Organizational Unit Name (OU) becomes the server name
and the Common Name (CN) becomes the node name.

The dsc source code distribution includes some shell scripts that we have
used to create X.509 certificates. You can find them in the presenter/certs

directory. Note these are not installed into /usr/local/dsc. You should edit
openssl.conf and enter the relevant information for your organization.

3.1.1 Certificate Authority

You may need to create a self-signed certificate authority if you don’t already
have one. The CA signs client and server certificates. You will need to distribute

11

the CA and client certificates to collector sites. Here is how to use our create-
ca-cert.sh script:

% sh create-ca-cert.sh

CREATING CA CERT

Generating a 2048 bit RSA private key

..

............+++

......+++

writing new private key to ’./private/cakey.pem’

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

3.1.2 Server Certificate

The server certificate is used by the HTTP server (Apache/mod ssl). The clients
will have a copy of the CA certificate so they can validate the server’s certificate
when uploading XML files. Use the create-srv-cert.sh script to create a
server certificate:

% sh create-srv-cert.sh

CREATING SERVER REQUEST

Generating a 1024 bit RSA private key

..........................++++++

.....................................++++++

writing new private key to ’server/server.key’

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Colorado

Locality Name (eg, city) []:Boulder

Organization Name (eg, company) [Internet Widgits Pty Ltd]:The Measurement Factory, Inc

Organizational Unit Name (eg, section) []:DNS

Common Name (eg, YOUR name) []:dns.measurement-factory.com

Email Address []:wessels@measurement-factory.com

Please enter the following ’extra’ attributes

to be sent with your certificate request

12

A challenge password []:

An optional company name []:

Enter pass phrase for server/server.key:

writing RSA key

CREATING SERVER CERT

Using configuration from ./openssl.conf

Enter pass phrase for ./private/cakey.pem:

Check that the request matches the signature

Signature ok

The Subject’s Distinguished Name is as follows

countryName :PRINTABLE:’US’

stateOrProvinceName :PRINTABLE:’Colorado’

localityName :PRINTABLE:’Boulder’

organizationName :PRINTABLE:’The Measurement Factory, Inc’

organizationalUnitName:PRINTABLE:’DNS’

commonName :PRINTABLE:’dns.measurement-factory.com’

emailAddress :IA5STRING:’wessels@measurement-factory.com’

Certificate is to be certified until Jun 3 20:06:17 2013 GMT (3000 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

Note that the Common Name must match the hostname of the HTTP server
that receives XML files.

Note that the create-srv-cert.sh script rewrites the server key file with-
out the RSA password. This allows your HTTP server to start automatically
without prompting for the password.

The script leaves the server certificate and key in the server directory. You’ll
need to copy these over to the HTTP server config directory as described later
in this chapter.

3.2 Client Certificates

Generating client certificates is similar. Remember that the Organizational Unit
Name and Common Name correspond to the collector’s server and node names.
For example:

% sh create-clt-cert.sh

CREATING CLIENT REQUEST

Generating a 1024 bit RSA private key

................................++++++

..............++++++

writing new private key to ’client/client.key’

Enter PEM pass phrase:

13

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:California

Locality Name (eg, city) []:Los Angeles

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Some DNS Server

Organizational Unit Name (eg, section) []:x-root

Common Name (eg, YOUR name) []:LAX

Email Address []:noc@example.com

Please enter the following ’extra’ attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

CREATING CLIENT CERT

Using configuration from ./openssl.conf

Enter pass phrase for ./private/cakey.pem:

Check that the request matches the signature

Signature ok

The Subject’s Distinguished Name is as follows

countryName :PRINTABLE:’US’

stateOrProvinceName :PRINTABLE:’California’

localityName :PRINTABLE:’Los Angeles’

organizationName :PRINTABLE:’Some DNS Server’

organizationalUnitName:PRINTABLE:’x-root ’

commonName :PRINTABLE:’LAX’

emailAddress :IA5STRING:’noc@example.com’

Certificate is to be certified until Jun 3 20:17:24 2013 GMT (3000 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

Enter pass phrase for client/client.key:

writing RSA key

writing RSA key

The client’s key and certificate will be placed in a directory based on the
server and node names. For example:

14

% ls -l client/x-root/LAX

total 10

-rw-r--r-- 1 wessels wessels 3311 Mar 17 13:17 client.crt

-rw-r--r-- 1 wessels wessels 712 Mar 17 13:17 client.csr

-r-------- 1 wessels wessels 887 Mar 17 13:17 client.key

-rw-r--r-- 1 wessels wessels 1953 Mar 17 13:17 client.pem

The client.pem (and cacert.pem) files should be copied to the collector
machine.

3.3 Apache Configuration

You need to configure Apache for SSL. Here is what our configuration looks like:

SSLRandomSeed startup builtin

SSLRandomSeed startup file:/dev/random

SSLRandomSeed startup file:/dev/urandom 1024

SSLRandomSeed connect builtin

SSLRandomSeed connect file:/dev/random

SSLRandomSeed connect file:/dev/urandom 1024

<VirtualHost _default_:443>

DocumentRoot "/httpd/htdocs-ssl"

SSLEngine on

SSLCertificateFile /httpd/conf/SSL/server/server.crt

SSLCertificateKeyFile /httpd/conf/SSL/server/server.key

SSLCertificateChainFile /httpd/conf/SSL/cacert.pem

For client-validation

SSLCACertificateFile /httpd/conf/SSL/cacert.pem

SSLVerifyClient require

SSLOptions +CompatEnvVars

Script PUT /cgi-bin/put-file.pl

</VirtualHost>

Note the last line of the configuration specifies the CGI script that accepts PUT
requests. The SSLOptions line is necessary so that the CGI script receives cer-
tain HTTP headers as environment variables. Those headers/variables convey
the X.509 information to the script so it knows where to store received XML
files.

15

Chapter 4

Collector Installation

A collector machine needs only the dsc binary, a configuration file, and a couple
of cron job scripts.

At this point, dsc lacks certain niceties such as a ./configure script. The
installation prefix, /usr/local/dsc is currently hard-coded.

4.1 Prerequisites

You’ll need a C/C++ compiler to compile the dsc source code.
If the collector and archiver are different systems, you’ll need a way to trans-

fer data files. We recommend that you use the curl HTTP/SSL client You may
use another technique, such as scp or rsync if you prefer.

4.2 Installation

You can compile dsc from the collector directory:

% cd collector

% make

Assuming there are no errors or problems during compilation, install the dsc
binary and other scripts with:

% make install

This installs five files:

/usr/local/dsc/bin/dsc

/usr/local/dsc/etc/dsc.conf.sample

/usr/local/dsc/libexec/upload-prep.pl

16

/usr/local/dsc/libexec/upload-rsync.sh

/usr/local/dsc/libexec/upload-x509.sh

Of course, if you don’t want to use the default installation prefix, you can
manually copy these files to a location of your choosing. If you do that, you’ll
also need to edit the cron scripts to match your choice of pathnames, etc.

4.3 Uploading XML Files

This section describes how XML files are transferred from the collector to one
or more Presenter systems.

As we’ll see in the next chapter, each dsc process has its own run directory.
This is the directory where dsc leaves its XML files. It usually has a name
like /usr/local/dsc/run/NODENAME. XML files are removed after they are
successfully transferred. If the Presenter is unreachable, XML files accumulate
here until they can be transferred. Make sure that you have enough disk space
to queue a lot of XML files in the event of an outage.

In general we want to be able to upload XML files to multiple presenters.
This is the reason behind the upload-prep.pl script. This script runs every 60
seconds from cron:

* * * * * /usr/local/dsc/libexec/upload-prep.pl

upload-prep.pl looks for dsc.conf files in /usr/local/dsc/etc by de-
fault. For each config file found, it cd’s to the run dir and links1 XML files
to one or more upload directories. The upload directories are named upload/

dest1, upload/dest2, and so on.
In order for all this to work, you must create the directories in advance. For

example, if you are collecting stats on your nameserver named ns0 , and want
to send the XML files to two presenters (named oarc and archive), the directory
structure might look like:

% set prefix=/usr/local/dsc

% mkdir $prefix/run

% mkdir $prefix/run/ns0

% mkdir $prefix/run/ns0/upload

% mkdir $prefix/run/ns0/upload/oarc

% mkdir $prefix/run/ns0/upload/archive

With that directory structure, the upload-prep.pl script moves XML files
from the ns0 directory to the two upload directories, oarc and archive.

To actually transfer files to the presenter, use either upload-x509.sh or
upload-rsync.sh.

1as in “hard link” made with /bin/ln.

17

4.3.1 upload-x509.sh

This cron script is responsible for actually transferring XML files from the up-
load directories to the remote server. It creates a tar archive of XML files
and then uploads it to the remote server with curl. The script takes three
commandline arguments:

% upload-x509.sh NODE DEST URI

NODE must match the name of a directory under /usr/local/dsc/run.
Similarly, DEST must match the name of a directory under /usr/local/dsc/
run/NODE/upload. URI is the URL/URI that the data is uploaded to. Usually
it is just an HTTPS URL with the name of the destination server. We also
recommend running this from cron every 60 seconds. For example:

* * * * * /usr/local/dsc/libexec/upload-x509.sh ns0 oarc \

https://collect.oarc.isc.org/

* * * * * /usr/local/dsc/libexec/upload-x509.sh ns0 archive \

https://archive.example.com/

upload-x509.sh looks for X.509 certificates in /usr/local/dsc/certs. The
client certificate should be named /usr/local/dsc/certs/DEST/NODE.pem and
the CA certificate should be named /usr/local/dsc/certs/DEST/cacert.pem.
Note that DEST and NODE must match the upload-x509.sh command line
arguments.

4.3.2 upload-rsync.sh

This script can be used to transfer XML files files from the upload directories
to the remote server. It uses rsync and assumes that rsync will use ssh for
transport. This script also takes three arguments:

% upload-rsync.sh NODE DEST RSYNC-DEST

Note that DEST is the name of the local “upload” directory and RSYNC-
DEST is an rsync destination (i.e., hostname and remote directory). Here is
how you might use it in a crontab:

* * * * * /usr/local/dsc/libexec/upload-rsync.sh ns0 oarc \

dsc@collect.oarc.isc.org:/usr/local/dsc/data/Server/ns0

* * * * * /usr/local/dsc/libexec/upload-rsync.sh ns0 archive \

dsc@archive.oarc.isc.org:/usr/local/dsc/data/Server/ns0

18

Also note that upload-rsync.sh will actually store the remote XML files in
incoming/YYYY-MM-DD subdirectories. That is, if your RSYNC-DEST is host:
/usr/local/dsc/data/Server/ns0 then files will actually be written to /usr/

local/dsc/data/Server/ns0/incoming/YYYY-MM-DD on host, where YYYY-MM-
DD is replaced by the year, month, and date of the XML files. These subdirec-
tories reduce filesystem pressure in the event of backlogs.

rsync over ssh requires you to use RSA or DSA public keys that do not have
a passphrase. If you do not want to use one of ssh’s default identity files, you
can create one specifically for this script. It should be named dsc_uploader_id

(and dsc_uploader_id.pub) in the $HOME/.ssh directory of the user that will
be running the script. For example, you can create it with this command:

% ssh-keygen -t dsa -C dsc-uploader -f $HOME/.ssh/dsc_uploader_id

Then add dsc_uploader_id.pub to the authorized_keys file of the receiv-
ing userid on the presenter system.

19

Chapter 5

Configuring and Running
the dsc Collector

5.1 dsc.conf

Before running dsc you need to create a configuration file. Note that configu-
ration directive lines are terminated with a semi-colon. The configuration file
currently understands the following directives:

local address Specifies the DNS server’s local IP address. It is used to deter-
mine the “direction” of an IP packet: sending, receiving, or other. You
may specify multiple local addresses by repeating the local address line
any number of times.

Example: local address 172.16.0.1; Example: local address 2001:4f8:0:2::13;

run dir A directory that should become dsc’s current directory after it starts.
XML files will be written here, as will any core dumps.

Example: run dir "/var/run/dsc";

minfree bytes If the filesystem where dsc writes its XML files does not have
at least this much free space, then dsc will not write the XML files. This
prevents dsc from filling up the filesystem. The XML files that would
have been written are simply lost and cannot be receovered. dsc will
begin writing XML files again when the filesystem has the necessary free
space.

bpf program A Berkeley Packet Filter program string. Normally you should
leave this unset. You may use this to further restrict the traffic seen by
dsc. Note that dsc currently has one indexer that looks at all IP packets.
If you specify something like udp port 53 that indexer will not work.

20

However, if you want to monitor multiple DNS servers with separate dsc

instances on one collector box, then you may need to use bpf program to
make sure that each dsc process sees only the traffic it should see.

Note that this directive must go before the interface directive because dsc
makes only one pass through the configuration file and the BPF filter is
set when the interface is initialized.

Example: bpf program "dst host 192.168.1.1";

interface The interface name to sniff packets from. You may specify multiple
interfaces.

Example: interface fxp0;

bpf vlan tag byte order dsc knows about VLAN tags. Some operating sys-
tems (FreeBSD-4.x) have a bug whereby the VLAN tag id is byte-swapped.
Valid values for this directive are host and net (the default). Set this to
host if you suspect your operating system has the VLAN tag byte order
bug.

Example: bpf vlan tag byte order host;

match vlan A list of VLAN identifiers (integers). If set, only the packets
belonging to these VLANs are counted.

Example: match vlan 101 102;

qname filter This directive allows you to define custom filters to match query
names in DNS messages. Please see Section 7.3.4 for more information.

dataset This directive is the hart of dsc. However, it is also the most complex.
To save time we recommend that you copy interesting-looking dataset
definitions from dsc.conf.sample. Comment out any that you feel are
irrelevant or uninteresting. Later, as you become more familiar with dsc,
you may want to read the next chapter and add your own custom datasets.

5.2 A Complete Sample dsc.conf

Here’s how your entire dsc.conf file might look:

#bpf_program

interface em0;

local_address 192.5.5.241;

run_dir "/usr/local/dsc/run/foo";

dataset qtype dns All:null Qtype:qtype queries-only;

dataset rcode dns All:null Rcode:rcode replies-only;

dataset opcode dns All:null Opcode:opcode queries-only;

21

dataset rcode_vs_replylen dns Rcode:rcode ReplyLen:msglen replies-only;

dataset client_subnet dns All:null ClientSubnet:client_subnet queries-only

max-cells=200;

dataset qtype_vs_qnamelen dns Qtype:qtype QnameLen:qnamelen queries-only;

dataset qtype_vs_tld dns Qtype:qtype TLD:tld queries-only,popular-qtypes

max-cells=200;

dataset certain_qnames_vs_qtype dns CertainQnames:certain_qnames

Qtype:qtype queries-only;

dataset client_subnet2 dns Class:query_classification

ClientSubnet:client_subnet queries-only max-cells=200;

dataset client_addr_vs_rcode dns Rcode:rcode ClientAddr:client

replies-only max-cells=50;

dataset chaos_types_and_names dns Qtype:qtype Qname:qname

chaos-class,queries-only;

dataset idn_qname dns All:null IDNQname:idn_qname queries-only;

dataset edns_version dns All:null EDNSVersion:edns_version queries-only;

dataset do_bit dns All:null D0:do_bit queries-only;

dataset rd_bit dns All:null RD:rd_bit queries-only;

dataset idn_vs_tld dns All:null TLD:tld queries-only,idn-only;

dataset ipv6_rsn_abusers dns All:null ClientAddr:client

queries-only,aaaa-or-a6-only,root-servers-n et-only max-cells=50;

dataset transport_vs_qtype dns Transport:transport Qtype:qtype queries-only;

dataset direction_vs_ipproto ip Direction:ip_direction IPProto:ip_proto

any;

5.3 Running dsc

dsc accepts a single command line argument, which is the name of the config-
uration file. For example:

% cd /usr/local/dsc

% bin/dsc etc/foo.conf

If you run ps when dsc is running, you’ll see two processes:

60494 ?? S 0:00.36 bin/dsc etc/foo.conf

69453 ?? Ss 0:10.65 bin/dsc etc/foo.conf

The first process simply forks off child processes every 60 seconds. The child
processes do the work of analyzing and tabulating DNS messages.

Please use NTP or another technique to keep the collector’s clock synchro-
nized to the correct time.

22

Chapter 6

Viewing dsc Graphs

To view dsc data in a web browser, simply enter the URL to the dsc-grapher.
pl CGI. But before you do that, you’ll need to create a grapher configuration
file.

dsc-grapher.pl uses a simple configuration file to set certain menu options.
This configuration file is /usr/local/dsc/etc/dsc-grapher.cfg. You should
find a sample version in the same directory. For example:

server f-root pao1 sfo2

server isc senna+piquet

server tmf hq sc lgh

trace_windows 1hour 4hour 1day 1week 1month

accum_windows 1day 2days 3days 1week

timezone Asia/Tokyo

domain_list isc_tlds br nl ca cz il pt cl

domain_list isc_tlds sk ph hr ae bg is si za

valid_domains isc isc_tlds

Refer to Figure 6.1 to see how the directives affect the visual display. The
following three directives should always be set in the configuration file:

server This directive tells dsc-grapher.pl to list the given server and its asso-
ciated nodes in the “Servers/Nodes” section of its navigation menu. You
can repeat this directive for each server that the Presenter has.

trace windows Specifies the “Time Scale” menu options for trace-based plots.

accum windows Specifies the “Time Scale” menu options for “cumulative”
plots, such as the Classification plot.

Note that the dsc-grapher.cfg only affects what may appear in the nav-
igation window. It does NOT prevent users from entering other values in the

23

Figure 6.1: A sample graph

24

URL parameters. For example, if you have data for a server/node in your /usr/
local/dsc/data/ directory that is not listed in dsc-grapher.cfg, a user may
still be able to view that data by manually setting the URL query parameters.

The configuration file accepts a number of optional directives as well. You
may set these if you like, but they are not required:

timezone Sets the time zone for dates and times displayed in the graphs. You
can use this if you want to override the system time zone. The value
for this directive should be the name of a timezone entry in your system
database (usually found in /usr/share/zoneinfo. For example, if your
system time zone is set to UTC but you want the times displayed for the
London timezone, you can set this directive to Europe/London.

domain list This directive, along with valid domains , tell the presenter which
domains a nameserver is authoritative for. That information is used in
the TLDs subgraphs to differentiate requests for “valid” and “invalid”
domains.

The domain list creates a named list of domains. The first token is a name
for the list, and the remaining tokens are domain names. The directive
may be repeated with the same list name, as shown in the above example.

valid domains This directive glues servers and domain lists together. The
first token is the name of a server and the second token is the name of a
domain list .

embargo The embargo directive may be used to delay the availability of data
via the presenter. For example, you may have one instance of dsc-grapher.pl
for internal use only (password protected, etc). You may also have a sec-
ond instance for third-parties where data is delayed by some amount of
time, such as hours, days, or weeks. The value of the embargo directive
is the number of seconds which data availability should be delayed. For
example, if you set it to 604800, then viewers will not be able to see any
data less than one week old.

anonymize ip When the anonymize ip directive is given, IP addresses in the
display will be anonymized. The anonymization algorithm is currently
hard-coded and designed only for IPv4 addresses. It masks off the lower
24 bits and leaves only the first octet in place.

hide nodes When the hide nodes directive is given, the presenter will not dis-
play the list node names underneath the current server. This might be
useful if you have a number of nodes but only want viewers to see the
server as a whole, without exposing the particular nodes in the cluster.
Note, however, that if someone already knows the name of a node they can
hand-craft query terms in the URL to display the data for only that node.
In other words, the hide nodes only provides “security through obscurity.”

The first few times you try dsc-grapher.pl, be sure to run tail -f on the
HTTP server error.log file.

25

Chapter 7

dsc Datasets

A dataset is a 2-D array of counters. For example, you might have a dataset
with “Query Type” along one dimension and “Query Name Length” on the
other. The result is a table that shows the distribution of query name lengths
for each query type. For example:

Len A AAAA A6 PTR NS SOA
· · ·

11 14 8 7 11 2 0
12 19 2 3 19 4 1
· · ·

255 0 0 0 0 0 0

A dataset is defined by the following parameters:

• A name

• A protocol layer (IP or DNS)

• An indexer for the first dimension

• An indexer for the second dimension

• One or more filters

• Zero or more options and parameters

The dataset definition syntax in dsc.conf is:
dataset name protocol Label1:Indexer1 Label2:Indexer2 filter [parameters] ;

7.1 Dataset Name

The dataset name is used in the filename for dsc’s XML files. Although this is an
opaque string in theory, the Presenter’s XML extractor routines must recognize

26

Indexer Label Description
ip direction Direction one of sent, recv, or other
ip proto IPProto IP protocol (icmp, tcp, udp)
ip version IP version number (4, 6)

Table 7.1: IP packet indexers

the dataset name to properly parse it. The source code file presenter/perllib/
DSC/extractor/config.pm contains an entry for each known dataset name.

7.2 Protocol

dsc currently knows about two protocol layers: IP and DNS. On the dataset

line they are written as ip and dns.

7.3 Indexers

An indexer is simply a function that transforms the attributes of an IP/DNS
message into an array index. For some attributes the transformation is straight-
forward. For example, the “Query Type” indexer simply extracts the query type
value from a DNS message and uses this 16-bit value as the array index.

Other attributes are slightly more complicated. For example, the “TLD”
indexer extracts the TLD of the QNAME field of a DNS message and maps it
to an integer. The indexer maintains a simple internal table of TLD-to-integer
mappings. The actual integer values are unimportant because the TLD strings,
not the integers, appear in the resulting XML data.

When you specify an indexer on a dataset line, you must provide both the
name of the indexer and a label. The Label appears as an attribute in the XML
output. For example, Figure 7.1 shows the XML corresponding to this dataset
line:

dataset the_dataset dns Foo:foo Bar:bar queries-only;

In theory you are free to choose any label that you like, however, the XML
extractors look for specific labels. Please use the labels given for the indexers
in Tables 7.2 and 7.1.

7.3.1 IP Indexers

dsc includes only minimal support for collecting IP-layer stats. Mostly we are
interested in finding out the mix of IP protocols received by the DNS server.
It can also show us if/when the DNS server is the subject of denial-of-service

27

<array name="the_dataset" dimensions="2" start_time="1091663940" ...

<dimension number="1" type="Foo"/>

<dimension number="2" type="Bar"/>

<data>

<Foo val="1">

<Bar val="0" count="4"/>

...

<Bar val="100" count="41"/>

</Foo>

<Foo val="2">

...

</Foo>

</data>

</array>

Figure 7.1: Sample XML output

attack. Table 7.1 shows the indexers for IP packets. Here are their longer
descriptions:

ip direction One of three values: sent, recv, or else. Direction is determined
based on the setting for local address in the configuration file.

ip proto The IP protocol type, e.g.: tcp, udp, icmp. Note that the bpf program
setting affects all traffic seen by dsc. If the program contains the word
“udp” then you won’t see any counts for non-UDP traffic.

ip version The IP version number, e.g.: 4 or 6. Can be used to compare how
much traffic comes in via IPv6 compared to IPV4.

7.3.2 IP Filters

Currently there is only one IP protocol filter: any. It includes all received
packets.

7.3.3 DNS Indexers

Table 7.2 shows the currently-defined indexers for DNS messages, and here are
their descriptions:

certain qnames This indexer isolates the two most popular query names seen
by DNS root servers: localhost and [a–m].root-servers.net .

client subnet Groups DNS messages together by the subnet of the client’s
IP address. The subnet is maked by /24 for IPv4 and by /96 for IPv6.
We use this to make datasets with large, diverse client populations more
manageable and to provide a small amount of privacy and anonymization.

28

Indexer Label Description
certain qnames CertainQnames Popular query names seen at roots
client subnet ClientSubnet The client’s IP subnet (/24 for IPv4, /96 for IPv6)
client ClientAddr The client’s IP address
do bit DO Whether the DO bit is on
edns version EDNSVersion The EDNS version number
idn qname IDNQname If the QNAME is in IDN format
msglen MsgLen The DNS message length
null All A “no-op” indexer
opcode Opcode DNS message opcode
qclass - Query class
qname Qname Full query name
qnamelen QnameLen Length of the query name
qtype Qtype DNS query type
query classification Class A classification for bogus queries
rcode Rcode DNS reply code
rd bit RD Check if Recursion Desired bit set
tld TLD TLD of the query name
transport Transport Transport protocol for the DNS message (UDP or TCP)
dns ip version IPVersion IP version of the packet carrying the DNS message

Table 7.2: DNS message indexers

client The IP (v4 and v6) address of the DNS client.

do bit This indexer has only two values: 0 or 1. It indicates whether or not
the “DO” bit is set in a DNS query. According to RFC 2335: Setting the
DO bit to one in a query indicates to the server that the resolver is able
to accept DNSSEC security RRs.

edns version The EDNS version number, if any, in a DNS query. EDNS
Version 0 is documented in RFC 2671.

idn qname This indexer has only two values: 0 or 1. It returns 1 when the
first QNAME in the DNS message question section is an internationalized
domain name (i.e., containing non-ASCII characters). Such QNAMEs
begin with the string xn--. This convention is documented in RFC 3490.

msglen The overall length (size) of the DNS message.

null A “no-op” indexer that always returns the same value. This can be used
to effectively turn the 2-D table into a 1-D array.

opcode The DNS message opcode is a four-bit field. QUERY is the most
common opcode. Additional currently defined opcodes include: IQUERY,
STATUS, NOTIFY, and UPDATE.

29

qclass The DNS message query class (QCLASS) is a 16-bit value. IN is the
most common query class. Additional currently defined query class values
include: CHAOS, HS, NONE, and ANY.

qname The full QNAME string from the first (and usually only) QNAME in
the question section of a DNS message.

qnamelen The length of the first (and usually only) QNAME in a DNS mes-
sage question section. Note this is the “expanded” length if the message
happens to take advantage of DNS message “compression.”

qtype The query type (QTYPE) for the first QNAME in the DNS message
question section. Well-known query types include: A, AAAA, A6, CNAME,
PTR, MX, NS, SOA, and ANY.

query classification A stateless classification of “bogus” queries:

• non-auth-tld: when the TLD is not one of the IANA-approved TLDs.

• root-servers.net: a query for a root server IP address.

• localhost: a query for the localhost IP address.

• a-for-root: an A query for the DNS root (.).

• a-for-a: an A query for an IPv4 address.

• rfc1918-ptr: a PTR query for an RFC 1918 address.

• funny-class: a query with an unknown/undefined query class.

• funny-qtype: a query with an unknown/undefined query type.

• src-port-zero: when the UDP message’s source port equals zero.

• malformed: a malformed DNS message that could not be entirely
parsed.

rcode The RCODE value in a DNS reply. The most common response codes
are 0 (NO ERROR) and 3 (NXDOMAIN).

rd bit This indexer returns 1 if the RD (recursion desired) bit is set in the
query. Usually only stub resolvers set the RD bit. Usually authoritative
servers do not offer recursion to their clients.

tld the TLD of the first QNAME in a DNS message’s question section.

transport Indicates whether the DNS message is carried via UDP or TCP.

dns ip version The IP version number that carried the DNS message.

30

7.3.4 DNS Filters

You must specify one or more of the following filters (separated by commas) on
the dataset line:

any The no-op filter, counts all messages.

queries-only Count only DNS query messages. A query is a DNS message
where the QR bit is set to 0.

replies-only Count only DNS reply messages. A query is a DNS message
where the QR bit is set to 1.

popular-qtypes Count only DNS messages where the query type is one of: A,
NS, CNAME, SOA, PTR, MX, AAAA, A6, ANY.

idn-only Count only DNS messages where the query name is in the interna-
tionalized domain name format.

aaaa-or-a6-only Count only DNS Messages where the query type is AAAA
or A6.

root-servers-net-only Count only DNS messages where the query name is
within the root-servers.net domain.

chaos-class Counts only DNS messages where QCLASS is equal to CHAOS
(3). The CHAOS class is generally used for only the special hostname.bind
and version.bind queries.

Note that multiple filters are ANDed together. That is, they narrow the input
stream, rather than broaden it.

In addition to these pre-defined filters, you can add your own custom filters.

qname filter

The qname filter directive defines a new filter that uses regular expression match-
ing on the QNAME field of a DNS message. This may be useful if you have a
server that is authoritative for a number of zones, but you want to limit your
measurements to a small subset. The qname filter directive takes two argu-
ments: a name for the filter and a regular expression. For example:

qname_filter MyFilterName example\.(com|net|org)$;

This filter matches queries (and responses) for names ending with exam-
ple.com, example.net , and example.org. You can reference the named filter in
the filters part of a dataset line. For example:

dataset qtype dns All:null Qtype:qtype queries-only,MyFilterName;

31

7.3.5 Parameters

dsc currently supports the following optional parameters:

min-count=NN Cells with counts less than NN are not included in the out-
put. Instead, they are aggregated into the special values -:SKIPPED:-

and -:SKIPPED SUM:-. This helps reduce the size of datasets with a large
number of small counts.

max-cells=NN A different, perhaps better, way of limiting the size of a
dataset. Instead of trying to determine an appropriate min-count value
in advance, max-cells allows you put a limit on the number of cells to
include for the second dataset dimension. If the dataset has 9 possible
first-dimension values, and you specify a max-cell count of 100, then the
dataset will not have more than 900 total values. The cell values are
sorted and the top max-cell values are output. Values that fall below the
limit are aggregated into the special -:SKIPPED:- and -:SKIPPED SUM:-

entries.

32

Chapter 8

Data Storage

8.1 XML Structure

A dataset XML file has the following structure:

<array name="dataset-name" dimensions="2" start_time="unix-seconds"

stop_time="unix-seconds">

<dimension number="1" type="Label1"/>

<dimension number="2" type="Label2"/>

<data>

<Label1 val="D1-V1">

<Label2 val="D2-V1" count="N1"/>

<Label2 val="D2-V2" count="N2"/>

<Label2 val="D2-V3" count="N3"/>

</Label1>

<Label1 val="D1-V2">

<Label2 val="D2-V1" count="N1"/>

<Label2 val="D2-V2" count="N2"/>

<Label2 val="D2-V3" count="N3"/>

</Label1>

</data>

</array>

dataset-name, Label1 , and Label2 come from the dataset definition in dsc.conf .
The start time and stop time attributes are given in Unix seconds. They are

normally 60-seconds apart. dsc usually starts a new measurement interval on
60 second boundaries. That is:

stop time mod 60 == 0 (8.1)

The LABEL1 VAL attributes (D1-V1 , D1-V2 , etc) are values for the first
dimension indexer. Similarly, the LABEL2 VAL attributes (D2-V1 , D2-V2 ,
D2-V3) are values for the second dimension indexer. For some indexers these

33

values are numeric, for others they are strings. If the value contains certain
non-printable characters, the string is base64-encoded and the optional BASE64
attribute is set to 1.

There are two special VALs that help keep large datasets down to a rea-
sonable size: -:SKIPPED:- and -:SKIPPED SUM:-. These may be present on
datasets that use the min-count and max-cells parameters (see Section 7.3.5).
-:SKIPPED:- is the number of cells that were not included in the XML out-
put. -:SKIPPED SUM:-, on the other hand, is the sum of the counts for all the
skipped cells.

Note that “one-dimensional datasets” still use two dimensions in the XML
file. The first dimension type and value will be “All”, as shown in the example
below.

The count values are always integers. If the count for a particular tuple is
zero, it should not be included in the XML file.

Note that the contents of the XML file do not indicate where it came from.
In particular, the server and node that it came from are not present. Instead,
DSC relies on the presenter to store XML files in a directory hierarchy with the
server and node as directory names.
Here is a short sample XML file with real content:

<array name="rcode" dimensions="2" start_time="1154649600"

stop_time="1154649660">

<dimension number="1" type="All"/>

<dimension number="2" type="Rcode"/>

<data>

<All val="ALL">

<Rcode val="0" count="70945"/>

<Rcode val="3" count="50586"/>

<Rcode val="4" count="121"/>

<Rcode val="1" count="56"/>

<Rcode val="5" count="44"/>

</All>

</data>

</array>

Please see http://dns.measurement-factory.com/tools/dsc/sample-xml/

for more sample XML files.
The XML is not very strict and might cause XML purists to cringe. dsc

writes the XML files the old-fashioned way (with printf()) and reads them with
Perl’s XML::Simple module. Here is a possibly-valid DTD for the dataset XML
format. Note, however, that the LABEL1 and LABEL2 strings are different
for each dataset:

<!DOCTYPE ARRAY [

<!ELEMENT ARRAY (DIMENSION+, DATA))>

34

<!ELEMENT DIMENSION>

<!ELEMENT DATA (LABEL1+)>

<!ELEMENT LABEL1 (LABEL2+)>

<!ATTLIST ARRAY NAME CDATA #REQUIRED>

<!ATTLIST ARRAY DIMENSIONS CDATA #REQUIRED>

<!ATTLIST ARRAY START_TIME CDATA #REQUIRED>

<!ATTLIST ARRAY STOP_TIME CDATA #REQUIRED>

<!ATTLIST DIMENSION NUMBER CDATA #REQUIRED>

<!ATTLIST DIMENSION TYPE CDATA #REQUIRED>

<!ATTLIST LABEL1 VAL CDATA #REQUIRED>

<!ATTLIST LABEL2 VAL CDATA #REQUIRED>

<!ATTLIST LABEL2 COUNT CDATA #REQUIRED>

]>

8.1.1 XML File Naming Conventions

dsc relies on certain file naming conventions for XML files. The file name should
be of the format:

timestamp.dscdata.xml

For example:

1154649660.dscdata.xml

NOTE: Versions of DSC prior to 2008-01-30 used a different naming con-
vention. Instead of “dscdata” the XML file was named after the dataset that
generated the data. The current XML extraction code still supports the older
naming convention for backward compatibility. If the second component of the
XML file name is not “dscdata” then the extractor assume it is a dataset name.
Dataset names come from dsc.conf , and should match the NAME attribute of
the ARRAY tag inside the XML file. The timestamp is in Unix epoch seconds
and is usually the same as the stop time value.

8.2 Archived Data Format

dsc actually uses four different file formats for archived datasets. These are all
text-based and designed to be quickly read from, and written to, by Perl scripts.

8.2.1 Format 1

time k1 Nk1 k2 Nk2 k3 Nk3 ...

35

This is a one-dimensional time-series format.1 The first column is a timestamp
(unix seconds). The remaining space-separated fields are key-value pairs. For
example:

1093219980 root-servers.net 122 rfc1918-ptr 112 a-for-a 926 funny-qclass 16

1093220040 root-servers.net 121 rfc1918-ptr 104 a-for-a 905 funny-qclass 15

1093220100 root-servers.net 137 rfc1918-ptr 116 a-for-a 871 funny-qclass 12

8.2.2 Format 2

time j1 k1:Nj1,k1:k2:Nj1,k2:... j2 k1:Nj2,k1:k2:Nj2,k2:... ...

This is a two-dimensional time-series format. In the above, j represents the first
dimension indexer and k represents the second. Key-value pairs for the second
dimension are separated by colons, rather than space. For example:

1093220160 recv icmp:2397:udp:136712:tcp:428 sent icmp:819:udp:119191:tcp:323

1093220220 recv icmp:2229:udp:124708:tcp:495 sent icmp:716:udp:107652:tcp:350

1093220280 recv udp:138212:icmp:2342:tcp:499 sent udp:120788:icmp:819:tcp:364

1093220340 recv icmp:2285:udp:137107:tcp:468 sent icmp:733:udp:118522:tcp:341

8.2.3 Format 3

k Nk

This format is used for one-dimensional datasets where the key space is (po-
tentially) very large. That is, putting all the key-value pairs on a single line
would result in a very long line in the datafile. Furthermore, for these larger
datasets, it is prohibitive to store the data as a time series. Instead the counters
are incremented over time. For example:

10.0.160.0 3024

10.0.20.0 92

10.0.244.0 5934

8.2.4 Format 4

j k Nj,k

This format is used for two-dimensional datasets where one or both key spaces
are very large. Again, counters are incremented over time, rather than storing
the data as a time series. For example:

1Which means it can only be used for datasets where one of the indexers is set to the Null
indexer.

36

10.0.0.0 non-auth-tld 105

10.0.0.0 ok 37383

10.0.0.0 rfc1918-ptr 5941

10.0.0.0 root-servers.net 1872

10.0.1.0 a-for-a 6

10.0.1.0 non-auth-tld 363

10.0.1.0 ok 144

37

Chapter 9

Bugs

• Seems too confusing to have an opaque name for indexers in dsc.conf
dataset line. The names are pre-determined anyway since they must match
what the XML extractors look for.

• Also stupid to have indexer names and a separate “Label” for the XML
file.

• dsc perl modules are installed in the “site perl” directory but they should
probably be installed under /usr/local/dsc.

• dsc collector silently drops UDP frags

38

