
1

Bo Haglund, Soren Hein, Bob Richardson
Rev AB, 2018-08-20
GitHub releases are available at https://github.com/dds-bridge/dds/releases
Latest DLL issue with this description is available at http://www.bahnhof.se/wb758135/

Description of the DLL functions supported in Double Dummy Solver 2.9.0

Callable functions
The callable functions are all preceded with extern "C" __declspec(dllimport) int
__stdcall. The prototypes are available in dll.h in the “include” directory. Return codes are
given at the end.

Historical note
In addition to the core functions, further layers of interface functions and functionality have
been added to DDS over time. Therefore it is not always consistent whether a pointer or an
entire structure is passed to or from DDS. So please read the documentation carefully.

For the same reason, the function names are not entirely consistent with respect to the input
format. In the future, functions accepting “binary” deals will end on Bin, and those accepting
PBN text deals will end on PBN. At some point existing function names may be changed as well.

Types of functions

Mode Single Multiple

 Bin PBN Bin PBN

Solve SolveBoard

SolveBoardPBN SolveAllChunksBin

SolveAllBoards
SolveAllChunks
SolveAllChunksPBN

Calc CalcDDtable
CalcPar

CalcDDtablePBN
CalcParPBN

CalcAllTables CalcAllTablesPBN

Play AnalysePlayBin AnalysePlayPBN AnalyseAllPlaysBin AnalyseAllPlaysPBN

There are currently four main families of solvers, and each solver function contains exactly one
of these words:

▪ Solve: Solve hands for a given leader, strain etc., whether from the opening lead or later.

(Do not use the function names that are struck through.)

▪ Calc: Calculate tables for all 5 4 = 20 combinations leaders and strains in one go.
▪ Play: Find the optimal results after each card that was actually played on a given hand.
▪ Par: Calculate the par result. This can also be integrated within a Calc function.

The Bin functions are for deals that are specified in “binary” format, while the PBN functions are
for deals that are specified as PBN-like text strings. The “Single” functions are for solving a
single instance, while the “Multiple” functions are for solving several instances in one call. If

https://github.com/dds-bridge/dds/releases
http://www.bahnhof.se/wb758135/

2

you have multiple hands to solve, you will almost surely be better off using a Multiple function
and letting DDS figure out the multi-threading for you – see below.

Par family Uses Output format

 Text-1 Text-2 Bin

Par Vul, but not dealer Par SidesPar SidesParBin

Dealer Vul and dealer (not available) DealerPar DealerParBin

The Par functions are divided differently, as they operate on a finished Calc table (or in the case
of CalcPar and CalcParPBN, the par results are generated directly from a Calc function as well).
Par calculations are so fast that they are never multi-threaded.

The “Par” family, which does not contain the word “Dealer”, makes use of the vulnerability but
not of the dealer in a given deal. This can lead to rare differences depending on who opens the
bidding; for example both sides might make 1NT. The “Dealer” family makes use of both the
vulnerability and the dealer to arrive at a single overall par score.

The Text-1 and Text-2 output formats are described later. The “Bin” output format can be used
to generate your own output text strings if you don’t like ours. The two help functions
ConvertToSidesTextFormat and ConvertToDealerTextFormat do this for the Text-2 and Bin
formats, respectively, and you can look at the code at the end of Par.cpp if you are so inclined.

There are also some functions to do with DDS itself:
▪ GetDDSInfo can provide information about the DLL and how it is compiled and configured.
▪ ErrorMessage can turn an error code into an error string.
▪ SetThreading controls the type of threading that is used internally. If you’re using a ready-

made DLL, you probably don’t need to call this.
▪ SetMaxThreads sets the maximum number of threads to be used internally.
▪ SetResources sets both the maximum memory and the maximum number of threads. This

of SetMaxThreads should probably always be called on Linux/Mac, with a zero argument for
auto-configuration.

▪ FreeMemory relinquishes all dynamically allocated memory.

Multi-threading
DDS is quite optimized for performance including multi-threading. For example, DDS takes
advantage of similarity between hands (such as the same cards and strain but a different
declarer) and solves such hands as groups. DDS sets up threads and tries to load the threads as
equally as possible, looking into the individual hands as well. Unless you have an unusual set-
up, you’re probably not going to beat DDS’s multi-threading by trying to do it manually instead.

DDS has two types of threads available internally, “large” ones which are a bit faster and use
more memory, and “small” ones which are the opposite. DDS automatically chooses the right
mixture of thread types based on the available memory and number of threads.

3

Function Arguments Format Comment
SolveBoard struct deal dl,

int target,

int solutions,

int mode,

struct futureTricks *futp,

int threadIndex

Binary The most basic
function, solves a
single hand from the
beginning or from
later play

SolveBoardPBN struct dealPBN dlPBN,

int target,

int solutions,

int mode,

struct futureTricks *futp,

int threadIndex

PBN As SolveBoard, but
with PBN deal format.

CalcDDtable struct ddTableDeal
 tableDeal,
struct ddTableResults

 * tablep

Binary Solves an initial hand
for all possible
declarers and
denominations (up to
20 combinations)

CalcDDtablePBN struct ddTableDealPBN

 tableDealPBN,

struct ddTableResults

 * tablep

PBN

As CalcDDtable, but
with PBN deal format.

CalcAllTables struct ddTableDeals

 * dealsp,

int mode,

int trumpFilter[5],

struct ddTablesRes *resp,

struct allParResults

 * presp

Binary Solves a number of
hands in parallel.
Multi-threaded.

CalcAllTablesPBN struct ddTableDealsPBN

 *dealsp,

int mode,

int trumpFilter[5],

struct ddTablesRes *resp,

struct allParResults

 * presp

PBN

As CalcAllTables, but
with PBN deal format.

SolveAllBoards struct boardsPBN *bop,

struct solvedBoards

 * solvedp

PBN

Consider using this
instead of the next 2
“Chunk” functions”!

SolveAllChunksBin struct boards *bop,

struct solvedBoards

 *solvedp,

int chunkSize

Binary

Solves a number of
hands in parallel.
Multi-threaded.

SolveAllChunks struct boardsPBN *bop,

struct solvedBoards

 * solvedp,

int chunkSize

PBN Alias for
SolveAllChunksPBN;
don’t use!

SolveAllChunksPBN struct boardsPBN *bop,

struct solvedBoards

 * solvedp,

int chunkSize

PBN

Solves a number of
hands in parallel.
Multi-threaded.

4

Par struct ddTableResults

 * tablep,

struct parResults *presp,

int vulnerable

No format

Solves for the par
contracts given a DD
result table.

DealerPar struct ddTableResults

 * tablep,

struct parResultsDealer

 * presp,

int dealer,

int vulnerable

No format

Similar to Par(), but
requires and uses
knowledge of the
dealer.

DealerParBin struct ddTableResults

 * tablep,

struct parResultsMaster

 * presp,

int dealer,

int vulnerable

Binary Similar to DealerPar,
but with binary
output.

ConvertToDealerTextFormat struct parResultsMaster

 * pres,

char *resp

Text Example of text output
from DealerParBin.

SidesPar struct ddTableResults

 *tablep,

struct parResultsDealer

 * presp,

int vulnerable

No format Par results are given
for sides with the
DealerPar output
format.

SidesParBin struct ddTableResults

 * tablep,

struct parResultsMaster

 sidesRes[2],

int vulnerable

Binary Similar to SidesPar, but
with binary output.

ConvertToSidesTextFormat struct parResultsMaster

 * pres,

struct parTextResults

 * resp

Text Example of text output
from SidesParBin.

CalcPar struct ddTableDeal

 tableDeal,

int vulnerable,

struct ddTableResults

 * tablep,

struct parResults * presp

Binary Solves for both the DD
result table and the
par contracts. Is
deprecated, use a
CalcDDtable function
plus Par() instead!

CalcParPBN struct ddTableDealPBN

 tableDealPBN,

struct ddTableResults

 * tablep,

int vulnerable,

struct parResults * presp

PBN As CalcPar, but with
PBN input format. Is
deprecated, use a
CalcDDtable function
plus Par() instead!

5

AnalysePlayBin struct deal dl,

struct playTraceBin play,

struct solvedPlay

 * solvedp,

int thrId

Binary

Returns the par result
after each card in a
particular play
sequence

AnalysePlayPBN struct dealPBN dlPBN,

struct playTracePBN

 playPBN,

struct solvedPlay

 * solvedp,

int thrId

PBN

As AnalysePlayBin, but
with PBN deal format.

AnalyseAllPlaysBin struct boards *bop,

struct playTracesBin *plp,

struct solvedPlays

 * solvedp,

int chunkSize

Binary

Solves a number of
hands with play
sequences in parallel.
Multi-threaded.

AnalyseAllPlaysPBN struct boardsPBN *bopPBN,

struct playTracesPBN

 * plpPBN,

struct solvedPlays

 * solvedp,

int chunkSize

PBN

As AnalyseAllPlaysBin,
but with PBN deal
format.

SetThreading int code Can be used to select
the multi-threading
system that is used
internally. You
probably don’t need
this. The codes are in
dll.h

SetMaxThreads int userThreads Used at initial start
and can also be called
with a request for
allocating memory for
a specified number of
threads. Is apparently
mandatory on Linux
and Mac (optional on
Windows)

SetResources int maxMemoryMB,

int maxThreads
 Like SetMaxThreads,

but also sets the
maximum memory to
use. One of these two
functions is enough.

Fehler! Verweisquelle

konnte nicht gefunden

werden.

void Frees all allocated
dynamical memory.

GetDDSInfo DDSInfo * info
ErrorMessage int code,

char line[80]
 Turns a return code

into an error message
string

6

Data structures

Common encodings are as follows.

Encoding Element Value

Suit Spades
Hearts
Diamonds
Clubs
NT

0
1
2
3
4

Hand North
East
South
West

0
1
2
3

Vulnerable None
Both
NS only
EW only

0
1
2
3

Side N-S
E-W

0
1

Card Bit 2
…
Bit 13
Bit 14

Rank of deuce

Rank of king
Rank of ace

Holding A value of 16388 = 16384 + 4 is the encoding for the holding “A2” (ace and deuce).
The two lowest bits are always zero.

PBN Whole
hand

Example:
W:T5.K4.652.A98542 K6.QJT976.QT7.Q6 432.A.AKJ93.JT73 AQJ987.8532.84.K

struct Field Comment
deal int trump; Suit encoding
 int first; The hand leading to the trick. Hand encoding

 int currentTrickSuit[3]; Up to 3 cards may already have been played to

the trick. Suit encoding. Set to 0 if no card has
been played.

 int currentTrickRank[3]; Up to 3 cards may already have been played to
the trick. Value range 2-14. Set to 0 if no card
has been played.

 unsigned int

remainCards[4][4];
1st index is Hand, 2nd index is Suit. remainCards
uses Holding encoding.

7

struct Field Comment
dealPBN int trump; Suit encoding
 int first; The hand leading to the trick. Hand encoding
 int

currentTrickSuit[3];
Up to 3 cards may already have been played to
the trick. Suit encoding.

 int

currentTrickRank[3];
Up to 3 cards may already have been played to
the trick. Value range 2-14. Set to 0 if no card has
been played.

 char remainCards[80]; Remaining cards. PBN encoding.

struct Field Comment
ddTableDeal unsigned int

cards[4][4];
Encodes a deal. First index is hand. Hand
encoding. Second index is suit. Suit encoding.

struct Field Comment
ddTableDealPBN char cards[80]; Encodes a deal. PBN encoding.

struct Field Comment
ddTableDeals int noOfTables; Number of DD table deals in structure, at most

MAXNOOFTABLES
 struct ddTableDeal

 deals[X];
X = MAXNOOFTABLES * DDS_STRAINS

struct Field Comment
ddTableDealsPBN int noOfTables; Number of DD table deals in structure
 struct ddTableDealPBN

 deals[X];
X = MAXNOOFTABLES * DDS_STRAINS

struct Field Comment
boards int noOfBoards; Number of boards
 struct deal

 [MAXNOOFBOARDS];

 int target

 [MAXNOOFBOARDS];
See SolveBoard

 int solutions

 [MAXNOOFBOARDS];
See SolveBoard

 int mode

 [MAXNOOFBOARDS];
See SolveBoard

struct Field Comment
boardsPBN int noOfBoards; Number of boards
 struct dealPBN

 [MAXNOOFBOARDS];

 int target

 [MAXNOOFBOARDS];
See SolveBoard

 int solutions

 [MAXNOOFBOARDS];
See SolveBoard

 int mode

 [MAXNOOFBOARDS];
See SolveBoard

8

struct Field Comment
futureTricks int nodes; Number of nodes searched by the DD solver
 int cards; Number of cards for which a result is returned.

May be all the cards, but equivalent ranks are
omitted, so for a holding of KQ76 only the cards K
and 7 would be returned, and the “equals” field
below would be 2048 (Q) for the king and 64 (6)
for the 7.
For KQ765: rank[0] = 13, rank[1] = 7, equals[0] =
4096 (for the Q), equals[1] = 96 (for the 6 and 5).

 int suit[13]; Suit of the each returned card. Suit encoding
 int rank[13]; Rank of the returned card. Value range 2-14.
 int equals[13]; Lower-ranked equals. Holding encoding.
 int score[13]; -1: target not reached.

-2 (if mode == 0): Only one card to be played; see
SolveBoard() description.
Otherwise: Target of maximum number of tricks.

struct Field Comment
solvedBoards int noOfBoards;
 struct futureTricks

 solvedBoard

 [MAXNOOFBOARDS];

Struct Field Comment
ddTableResults int resTable[5][4]; Encodes the solution of a deal for combinations

of denomination and declarer. First index is
denomination. Suit encoding. Second index is
declarer. Hand encoding. Each entry is a number
of tricks.

Struct Field Comment
ddTablesRes int noOfBoards; Number of DD table deals in structure, at most

 MAXNOOFTABLES
 struct ddTableResults

 results[X];
X = MAXNOOFTABLES * DDS_STRAINS

9

struct Field Comment
parResults char parScore[2][16]; First index is NS/EW. Side encoding.
 char parContractsString

 [2][128];
First index is NS/EW. Side encoding.

struct Field Comment
allParResults struct parResults

 [MAXNOOFTABLES];
There are up to 20 declarer/strain
combinations per DD table

struct Field Comment
parResultsDealer int number;
 int score;
 char contracts[10][10];

struct Field Comment
parResultsMaster int score;
 int number;
 struct contractType

 contracts[10];

struct Field Comment
contractType int underTricks;
 int overTricks;
 int level;
 int denom;
 int seats;

struct Field Comment
parTextResults char parText[2][128];
 int equal;

struct Field Comment
DDSInfo int major, minor patch;
 char versionString[10]; Printable version string
 int system; 0 unknown, 1 Windows, 2 Cygwin, 3

Linux, 4 Apple
 int compiler; 0 unknown, 1 Microsoft Visual C++, 2

mingw, 3 GNU g++, 4 clang
 int constructor; 0 none, 1 DLLMain, 2 Unix-style
 int threading; 0 none, 1 Windows, 2 OpenMP, 3 GCD
 int noOfThreads;
 char systemString[512]; Printable summary string

10

struct Field Comment
playTraceBin int number; Number of cards in the play trace,

starting from the first card in the trace
(so excluding any cards in deal in
currentTrickSuit and currentTrickRank)

 int suit[52]; Suit encoding.
 int rank[52]; Encoding 2 .. 14 (not Card encoding).

struct Field Comment
playTracePBN int number; Number of cards in the play trace,

starting as in playTraceBin
 char cards[106]; String of cards with no space in

between, also not between tricks. Each
card consists of a suit (C/D/H/S) and
then a rank (2 .. A). The string must be
null-terminated.

struct Field Comment
playTracesBin int noOfBoards;
 struct playTraceBin

 plays[MAXNOOFBOARDS];

struct Field Comment
playTracesPBN int noOfBoards;
 Struct playTracePBN

 plays[MAXNOOFBOARDS];

struct Field Comment
solvedPlay int number;
 int tricks[53]; Starting position and up to 52 cards

struct Field Comment
solvedPlays int noOfBoards;
 struct solvedPlay

 solved[MAXNOOFBOARDS];

11

Functions

SolveBoard
struct deal dl,

int target,

int solutions,

int mode,

struct futureTricks *futp,

int threadIndex

SolveBoardPBN
struct dealPBN dl,

int target,

int solutions,

int mode,

struct futureTricks *futp,

int threadIndex

SolveBoardPBN is just like SolveBoard, except for the input format. Historically it was one of the
first functions, and it exposes the thread index directly to the user. Later functions generally
don’t do that, and they also hide the implementation details such as transposition tables, see
below.

SolveBoard solves a single deal “dl” and returns the result in “*futp” which must be declared
before calling SolveBoard.

If you have multiple hands to solve, it is always better to group them together into a single
function call than to use SolveBoard.

SolveBoard is thread-safe, so several threads can call SolveBoard in parallel. Thus the user of
DDS can create threads and call SolveBoard in parallel over them. The maximum number of
threads is fixed in the DLL at compile time and is currently 16. So “threadIndex” must be
between 0 and 15 inclusive; see also the function SetMaxThreads. Together with the
PlayAnalyse functions, this is the only function that exposes the thread number to the user.

There is a “transposition table” memory associated with each thread. Each node in the table is
effectively a position after certain cards have been played and other certain cards remain. The
table is not deleted automatically after each call to SolveBoard, so it can be reused from call to
call. However, it only really makes sense to reuse the table when the hand is very similar in the
two calls. The function will still run if this is not the case, but it won’t be as efficient. The reuse
of the transposition table can be controlled by the “mode” parameter, but normally this is not
needed and should not be done.

The three parameters “target”, “solutions” and “mode” together control the function.
Generally speaking, the target is the number of tricks to be won (at least) by the side to play;
solutions controls how many solutions should be returned; and mode controls the search
behavior. See next page for definitions.

For equivalent cards, only the highest is returned, and lower equivalent cards are encoded in
the futureTricks structure (see “equals”).

12

target solutions Comment

-1 1 Find the maximum number of tricks for the side to play.
Return only one of the optimum cards and its score.

-1 2 Find the maximum number of tricks for the side to play.
Return all optimum cards and their scores.

0 1 Return only one of the cards legal to play, with score set to 0.

0 2 Return all cards that legal to play, with score set to 0.

1 .. 13 1 If score is -1: Target cannot be reached.
If score is 0: In fact no tricks at all can be won.
If score is > 0: score will always equal target, even if more tricks
can be won.
One of the cards achieving the target is returned.

1 .. 13 2 Return all cards meeting (at least) the target.
If the target cannot be achieved, only one card is returned with
the score set as above.

any 3 Return all cards that can be legally played, with their scores in
descending order.

mode Reuse TT? Comment

0 Automatic if
same trump
suit and the
same or nearly
the same cards
distribution,
deal.first
can be
different.

Do not search to find the score if the hand to play has only one
card, including its equivalents, to play. Score is set to –2 for this
card, indicating that there are no alternative cards. If there are
multiple choices for cards to play, search is done to find the
score. This mode is very fast but you don’t always search to find
the score.

1 Always search to find the score. Even when the hand to play has
only one card, with possible equivalents, to play.

2 Always

Note: mode no longer always has this effect internally in DDS. We think mode is no longer
useful, and we may use it for something else in the future. If you think you need it, let us know!

“Reuse” means “reuse the transposition table from the previous run with the same thread
number”. For mode = 2 it is the responsibility of the programmer using the DLL to ensure that
reusing the table is safe in the actual situation. Example: Deal is the same, except for
deal.first. The trump suit is the same.

1st call, East leads: SolveBoard(deal, -1, 1, 1, &fut, 0), deal.first=1
 2nd call, South leads: SolveBoard(deal, -1, 1, 2, &fut, 0), deal.first=2
 3rd call, West leads: SolveBoard(deal, -1, 1, 2, &fut, 0), deal.first=3

4th call, North leads: SolveBoard(deal, -1, 1, 2, &fut, 0), deal.first=0

13

CalcDDtable
struct ddTableDeal tableDeal,

struct ddTableResults * tablep

CalcDDtablePBN
struct ddTableDealPBN tableDealPBN,

struct ddTableResults * tablep

CalcDDtablePBN is just like CalcDDtable, except for the input format.

CalcDDtable solves a single deal “tableDeal” and returns the double-dummy values for the
initial 52 cards for all the 20 combinations of denomination and declarer in “*tablep”, which
must be declared before calling CalcDDtable.

CalcAllTables
struct ddTableDeals *dealsp,

int mode,

int trumpFilter[5],

struct ddTablesRes *resp,

struct allParResults *presp

CalcAllTablesPBN
struct ddTableDealsPBN *dealsp,

int mode,

int trumpFilter[5],

struct ddTablesRes *resp,

struct allParResults *presp

CalcAllTablesPBN is just like CalcAllTables, except for the input format.

CalcAllTables calculates the double dummy values of the denomination/declarer hand
combinations in “*dealsp” for a number of DD tables in parallel. This increases the speed
compared to calculating these values using a CalcDDtable call for each DD table. The results are
returned in “*resp” which must be defined before CalcAllTables is called.

The “mode” parameter contains the vulnerability (Vulnerable encoding; not to be confused
with the SolveBoard mode) for use in the par calculation. It is set to -1 if no par calculation is to
be performed.

There are 5 possible denominations or strains (the four trump suits and no trump). The
parameter “trumpFilter” describes which, if any, of the 5 possibilities that will be excluded
from the calculations. They are defined in Suit encoding order, so setting trumpFilter to {FALSE,
FALSE, TRUE, TRUE, TRUE} means that values will only be calculated for the trump suits spades
and hearts.

The maximum number of DD tables in a CalcAllTables call depends on the number of strains
required, see the following table:

Number of strains Maximum number of DD tables

5 32

4 40

3 53

2 80

1 160

14

SolveAllBoards
struct boards *bop,

struct solvedBoards

 * solvedp

SolveAllChunksBin
struct boards *bop,

struct solvedBoards *solvedp,

int chunkSize

SolveAllChunksPBN
struct boardsPBN *bop,

struct solvedBoards *solvedp,

int chunkSize

SolveAllChunks is an alias for SolveAllChunksPBN; don’t use it.

SolveAllBoards used to be an alias for SolveAllChunksPBN with a chunkSize of 1; however this
has been changed in v2.8, and as of v2.8.4 it is in fact the other way round. Now
SolveAllChunksBin* are aliases to SolveAllBoards, and they ignore the chunk size. Use
SolveAllBoards directly instead!

The SolveAll* functions invoke SolveBoard several times in parallel in multiple threads, rather
than sequentially in a single thread. This increases execution speed. Up to 200 boards are
permitted per call.

For historical reasons, an explanation of chunk size follows. If the chunk size was 1, then each
of the threads started out with a single board. If there were four threads, then boards 0, 1, 2
and 3 were initially solved. If thread 2 was finished first, it got the next available board, in this
case board 4. Perhaps this was a particularly easy board, so thread 2 also finished this board
before any other thread completed. Thread 2 then also got board 5, and so on. This continued
until all boards had been solved. In the end, three of the threads would be waiting for the last
thread to finish.

The transposition table in a given thread (see SolveBoard) is generally not reused between
board 2, 4 and 5 in thread 2. This only happens if SolveBoard itself determines that the boards
are suspiciously similar.

If the chunk size was 2, then initially thread 0 got boards 0 and 1, thread 1 got boards 2 and 3,
thread 2 got boards 4 and 5, and thread 3 got boards 6 and 7. When a thread was finished, it
got two new boards in one go, for instance boards 8 and 9. The transposition table in a given
thread was reused within a chunk.

No matter what the chunk size was, the boards were solved in parallel. If the user knew that
boards are grouped in chunks of 2 or 10, it was possible to force the DD solver to use this
knowledge. However, this is rather limiting on the user, as the alignment must remain perfect
throughout the batch.

SolveAllBoards now detects repetitions automatically within a batch, whether or not the hands
are evenly arranged and whether or not the duplicates are next to each other. This is more
flexible and transparent to the user, and the overhead is negligible. Therefore, use
SolveAllBoards!

15

Par
struct ddTableResults *tablep,

struct parResults *presp,

int vulnerable

DealerPar
struct ddTableResults *tablep,

struct parResultsDealer *presp,

int dealer,

int vulnerable

SidesPar
struct ddTableResults *tablep,

struct parResultsDealer *sidesRes[2],

int vulnerable

DealerParBin
struct ddTableResults *tablep,

struct parResultsMaster * presp,

int vulnerable

SidesParBin
struct ddTableResults *tablep,

struct parResultsMaster * presp,

int dealer,

int vulnerable

ConvertToDealerTextFormat
struct parResultsMaster *pres,

char *resp

ConvertToSidesTextFormat
struct parResultsMaster *pres,

struct parTextResults *resp

The functions Par, DealerPar, SidesPar, DealerParBin and SidesParBin calculate the par score
and par contracts of a given double-dummy solution matrix “*tablep” which would often be
the solution of a call to CalcDDtable. Since the input is a table, there is no PBN and non-PBN
version of these functions.

Before the functions can be called, a structure of the type “parResults”,
“parResultsDealer” or “parResultsMaster” must already have been defined.

The “vulnerable” parameter is given using Vulnerable encoding.

The Par() function uses knowledge of the vulnerability, but not of the dealer. It attempts to
return results for both declaring sides. These results can be different in some rare cases, for
instance when both sides can make 1NT due to the opening lead.

The DealerPar() function also uses knowledge of the “dealer” using Hand encoding. The
argument is that in all practical cases, the dealer is known when the vulnerability is known.
Therefore all results returned will be for the same side.

The SidesPar() function is similar to the Par() function, the only difference is that the par results
are given in the same format as for DealerPar().

In Par() and SidesPar() there may be more than one par score; in DealerPar() that is not the case.
Par() returns the scores as a text string, for instance “NS -460”, while DealerPar() and SidesPar()
use an integer, -460.

There may be several par contracts, for instance 3NT just making and 5C just making. Each par
contract is returned as a text string. The formats are a bit different betweeen the two output

16

format alternatives.

Par() returns the par contracts separated by commas. Possible different trick levels of par score
contracts are enumerated in the contract description, e.g the possible trick levels 3, 4 and 5 in
no trump are given as 345N. Pass is also a possible (though very rare) par contract. Examples:

• “NS:NS 23S,NS 23H”. North and South as declarer make 2 or 3 spades and hearts contracts,
2 spades and 2 hearts with an overtrick. This is from the NS view, shown by “NS:” meaning
that NS made the first bid. Note that this information is actually not enough, as it may be
that N and S can make a given contract and that either E or W can bid this same contract (for
instance 1NT) before N but not before S. So in the rare cases where the NS and EW sides are
not the same, the results will take some manual inspection.

• “NS:NS 23S,N 23H”: Only North makes 3 hearts.

• “EW:NS 23S,N 23H”: This time the result is the same when EW open the bidding.

DealerPar() and SidesPar() give each par contract as a separate text string:

• “4S*-EW-1” means that E and W can both sacrifice in four spades doubled, going down one
trick.

• “3N-EW” means that E and W can both make exactly 3NT.

• “4N-W+1” means that only West can make 4NT +1. In the last example, 5NT just making can
also be considered a par contract, but North-South don’t have a profitable sacrifice against
4NT, so the par contract is shown in this way. If North-South did indeed have a profitable
sacrifice, perhaps 5C*_NS-2, then par contract would have been shown as “5N-W”. Par()
would show “4N-W+1” as “W 45N”.

• SidesPar() give the par contract text strings as described above for each side.

DealerParBin and SidesParBin are similar to DealerPar and SidesPar, respectively, except that
both functions give the output results in binary using the “parResultsMaster” structure.
This simplifies the writing of a conversion program to get an own result output format.
Examples of such programs are ConvertToDealerTextFormat and ConvertToSidesTextFormat.

After DealerParBin or SidesParBin is called, the results in parResultsMaster are used when
calling ConvertToDealerTextFormat resp. ConvertToSidesTextFormat.

Output example from ConvertToDealerTextFormat:
“Par 110: NS 2S NS 2H”

Output examples from ConvertToSidesTextFormat:
“NS Par 130: NS 2D+2 NS 2C+2” when it does not matter who starts the bidding.
”NS Par -120: W 2NT
EW Par 120: W 1NT+1” when it matters who starts the bidding.

17

CalcPar
struct ddTableDeal dl

int vulnerable,

struct ddTableResults * tp,

struct parResults *presp

CalcParPBN
struct ddTableDealPBN dl,

struct ddTableResults * tp,

int vulnerable,

struct parResults *presp

CalcParPBN is just like CalcPar, except for the input format.

Each of these functions calculates both the double-dummy table solution and the par solution
to a given deal.

Both functions are deprecated. Instead use one of the CalcDDtable functions followed by Par().

18

AnalysePlayBin
struct deal dl,

struct playTraceBin play,

struct solvedPlay *solvedp,

int thrId

AnalysePlayPBN
struct dealPBN dlPBN,

struct playTracePBN playPBN,

struct solvedPlay *solvedp,

int thrId

AnalysePlayPBN is just like AnalysePlayBin, except for the input format.

The function returns a list of double-dummy values after each specific played card in a hand.
Since the function uses SolveBoard, the same comments apply concerning the thread number
“thrId” and the transposition tables.

As an example, let us say the DD result in a given contract is 9 tricks for declarer. The play
consists of the first trick, two cards from the second trick, and then declarer claims. The lead
and declarer’s play to the second trick (he wins the first trick) are sub-optimal. Then the trace
would look like this, assuming each sub-optimal costs 1 trick:

9 10 10 10 10 9 9

The number of tricks are always seen from declarer’s viewpoint (he is the one to the right of the
opening leader). There is one more result in the trace than there are cards played, because
there is a DD value before any card is played, and one DD value after each card played.

As of v2.8.3, the functions can be invoked not just from the beginning of a 13-trick hand, but
from any position. Cards in dl.currentTrickSuit and dl.currentTrickRank are respected.

AnalyseAllPlaysBin
struct boards *bop,

struct playTracesBin *plp,

struct solvedPlays *solvedp,

int chunkSize

AnalyseAllPlaysPBN
struct boardsPBN *bopPBN,

struct playTracesPBN *plpPBN,

struct solvedPlays *solvedp,

int chunkSize

AnalyseAllPlaysPBN is just like AnalyseAllPlaysBin, except for the input format.

The AnalyseAllPlays* functions invoke SolveBoard several times in parallel in multiple threads,
rather than sequentially in a single thread. This increases execution speed. Up to 20 boards are
permitted per call.

Concerning chunkSize, exactly the same remarks apply as with SolveAllChunksBin.

19

SetMaxThreads
int userThreads

SetResources
int maxMemoryMB,

int userThreads

SetThreading
int code

SetMaxThreads and SetResources set the system resources for DDS. SetThreading can set the
threading system that is used internally in DDS; you probably do not need this. The codes are in
DLL.h.

DDS has two thread sizes internally, “large” (about 95-160 MB) and “small” (about 20-30 MB).
The large ones are about 12-14% faster at the moment. DDS chooses the best mixture given the
resources constraints. More specifically, the memory usage will be limited as follows.

▪ maxMemoryMB plus a percentage (this works out statistically).
▪ 70% of the free memory.
▪ No more than 1800 MB if we’re on a 32-bit system.

The number of threads will currently be limited as follows.

▪ If compiled single-threaded, or single-threading is selected: 1.
▪ If one of the experimental “IMP” codes is used (don’t use!), 1.5 times the number of

processor cores.
▪ Otherwise the lower of userThreads and 1.5 times the number of processor cores.
▪ But fewer threads if there is not enough memory.

It is possible, especially on non-Windows systems, to call SetMaxThreads() actively, even though
the user does not want to influence the default values. In this case, use a 0 as argument.

SetMaxThreads/SetResources can be called multiple times even within the same session. So it is
theoretically possible to change the number of threads dynamically.

FreeMemory
It is possible to ask DDS to give up its dynamically allocated memory by calling FreeMemory.
This could be useful for instance if there is a long pause where DDS is not used within a session.
DDS will free its memory when the DLL detaches from the user program, so there is no need for
the user to call this function before detaching.

GetDDSInfo
DDSInfo * info

This function returns various system and version information.

20

Return codes

Value Code Comment

1 RETURN_NO_FAULT

-1 RETURN_UNKNOWN_FAULT Currently happens when fopen() returns an error or
when AnalyseAllPlaysBin() gets a different number of
boards in its first two arguments.

-2 RETURN_ZERO_CARDS SolveBoard(), self-explanatory.

-3 RETURN_TARGET_TOO_HIGH SolveBoard(), target is higher than the number of tricks
remaining.

-4 RETURN_DUPLICATE_CARDS SolveBoard(), self-explanatory.

-5 RETURN_TARGET_WRONG_LO SolveBoard(), target is less than -1.

-7 RETURN_TARGET_WRONG_HI SolveBoard(), target is higher than 13.

-8 RETURN_SOLNS_WRONG_LO SolveBoard(), solutions is less than 1.

-9 RETURN_SOLNS_WRONG_HI SolveBoard(), solutions is higher than 3.

-10 RETURN_TOO_MANY_CARDS SolveBoard(), self-explanatory.

-12 RETURN_SUIT_OR_RANK SolveBoard(), either currentTrickSuit or
currentTrickRank have wrong data.

-13 RETURN_PLAYED_CARD SolveBoard(), card already played is also a card still
remaining to play.

-14 RETURN_CARD_COUNT SolveBoard(), wrong number of remaining cards for a
hand.

-15 RETURN_THREAD_INDEX SolveBoard(), thread number is less than 0 or higher
than the maximum permitted.

-16 RETURN_MODE_WRONG_LO SolveBoard(), mode is less than 0.

-17 RETURN_MODE_WRONG_HI SolveBoard(), mode is greater than 2.

-18 RETURN_TRUMP_WRONG SolveBoard(), trump is not one or 0, 1, 2, 3, 4

-19 RETURN_FIRST_WRONG SolveBoard(), first is not one or 0, 1, 2

-98 RETURN_PLAY_FAULT AnalysePlay*() family of functions. (a) Less than 0 or
more than 52 cards supplied. (b) Invalid suit or rank
supplied. (c) A played card is not held by the right
player.

-99 RETURN_PBN_FAULT Returned from a number of places if a PBN string is
faulty.

-101 RETURN_TOO_MANY_THREADS Currently never returned.

-102 RETURN_THREAD_CREATE Returned from multi-threading functions.

-103 RETURN_THREAD_WAIT Returned from multi-threading functions when
something went wrong while waiting for all threads to
complete.

-201 RETURN_NO_SUIT CalcAllTables*(), returned when the denomination
filter vector has no entries

-202 RETURN_TOO_MANY_TABLES CalcAllTables*(), returned when too many tables are
requested.

-301 RETURN_CHUNK_SIZE SolveAllChunks*(), returned when the chunk size is < 1.

21

Revision History

Rev A, 2006-02-25. First issue.

Rev B, 2006-03-20 Updated issue.

Rev C, 2006-03-28 Updated issue. Addition of the SolveBoard parameter ”mode”.

Rev D, 2006-04-05 Updated issue. Usage of target=0 to list all cards that are legal to

play.

Rev E, 2006-05-29 Updated issue. New error code –10 for number of cards > 52.

Rev F, 2006-08-09 Updated issue. New mode parameter value = 2. New error code –

11 for calling SolveBoard with mode = 2 and forbidden values of
other parameters.

Rev F1, 2006-08-14 Clarifications on conditions for returning scores for the different

combinations of the values for target and solutions.

Rev F2, 2006-08-26 New error code –12 for wrongly set values of deal.currentTrickSuit

and deal.currentTrickRank.

Rev G, 2007-01-04 New DDS release 1.1, otherwise no change compared to isse F2.

Rev H, 2007-04-23 DDS release 1.4, changes for parameter mode=2.

Rev I, 2010-04-10 DDS release 2.0, multi-thread support.

Rev J, 2010-05-29 DDS release 2.1, OpenMP support, reuse of previous DD

transposition table results of similar deals.

Rev K, 2010-10-27 Correction of fault in the description: 2nd index in resTable of the

structure ddTableResults is declarer hand.

Rev L, 2011-10-14 Added SolveBoardPBN and CalcDDtablePBN.

Rev M, 2012-07-06 Added SolveAllBoards.

Rev N, 2012-07-16 Max number of threads is 8.

Rev O, 2012-10-21 Max number of threads is configured at initial start-up, but never

exceeds 16.

22

Rev P, 2013-03-16 Added functions CalcPar and CalcParPBN.

Rev Q, 2014-01-09 Added functions CalcAllTables/CalcAllTablesPBN.

Rev R, 2014-01-13 Updated functions CalcAllTables/CalcAllTablesPBN.

Rev S, 2014-01-13 Updated functions CalcAllTables/CalcAllTablesPBN.

Rev T, 2014-03-01 Added function SolveAllChunks.

Rev U, 2014-09-15 Added functions DealerPar, SidesPar, AnalysePlayBin,

AnalysePlayPBN, AnalyseAllPlaysBin, AnalyseAllPlaysPBN.

Rev V, 2014-10-14 Added functions SetMaxThreads, FreeMemory, DealerParBin,

SidesParBin, ConvertToDealerTextFormat,
ConvertToSidesTextFormat.

Rev X, 2014-11-16 Extended maximum number of tables when calling CalcAllTables.

Rev Y, 2016-01-01 Update to v2.8.3.

Rev Z, 2016-03-20 Update to v2.8.4.

Rev AA, 2018-04-01 Update to v2.9.0 beta.

Rev AB, 2018-08-20 Update to v2.9.0.

