
D
R

A
F

T
Increasing Proofs Automation Rate

of Atelier-B Thanks to Alt-Ergo

Sylvain Conchon1,2 and Mohamed Iguernlala3,1

1 LRI, Université Paris-Sud, Orsay F-91405
2 INRIA Saclay � Ile-de-France, Toccata, Orsay, F-91893

3 OCamlPro SAS, Gif-sur-Yvette F-91190

Abstract. In this paper, we report on our recent improvements in the
Alt-Ergo SMT solver to make it e�ective in discharging proof obliga-
tions (POs) translated from the Atelier-B framework. In particular, we
made important modi�cations in its internal data structures to boost
performances of its core decision procedures, we improved quanti�ers
instantiation heuristics, and enhanced the interaction between the SAT
solver and the decision procedures. We also introduced a new plugin
architecture to facilitate experiments with di�erent SAT engines, and
implemented a pro�ling plugin to track and identify �bottlenecks� when
a formula requires a long time to be discharged, or makes the solver time-

out. Experiments made with more than 10,000 POs generated from real
industrial B projects show signi�cant improvements compared to both
previous versions of Alt-Ergo and Atelier-B's automatic main prover.

Keywords: SMT solvers, B Proof Obligations, B Method

1 Introduction

The use of formal techniques to assess that software components conform to given
requirements is gaining an increasing interest in the industrial world during the
last decades. Indeed, when software are deployed in critical safety domains such
as aeronautics, medical �elds, and transportation, a high level of con�dence is
required because a bug may cause very costly damage.

Among formal frameworks, Atelier-B [4] is an industrial software develop-
ment tool that implements the B method, a method based on abstract machines
and re�nement techniques. Roughly speaking, a developer starts a B project by
designing an initial and most abstract version of a program, called abstract ma-
chine, that includes the formal speci�cations of the design's goal. Then, at each
re�nement step, the machine is turned into a more concrete one by adding more
details about data structures or algorithms. At the end, a C/C++ or Ada code is
produced. Each re�nement step generates a set of mathematical formulas, called
proof obligations (POs), that includes all the properties of the abstract machine
and of the re�nement process. These POs have to be proven coherent.

An industrial B project usually generates thousands of POs. Each PO is itself
a big �rst-order formula that requires complex reasoning, such as Set theory and



D
R

A
F

T
arithmetic, to be proved. In practice, proving manually the POs is a long and
boring exercise. Therefore, the success and �nancial pro�tability of a B project
strongly rests on the ability of proving resulting POs automatically.

Since its earlier versions, Atelier-B integrates a home-made automatic prover,
which is mainly dedicated to B's Set theory [1] with some limited support for
linear arithmetic. When a PO is not proved automatically, the user can either
try to guide the proof interactively, or add some proof rules to the context of the
solver, and prove the soundness of these rules later on. Consequently, to reduce
the price of B software, a solution would be to increase proofs automation rate
and to lower the number (cost) of manual proofs.

In order to increase proof automation, several research projects have started
the integration of SMT (Satis�ability Modulo Theories) solvers. SMT solvers
are recent and e�cient automatic theorem provers built on top of a satis�ability
(SAT) solver and a combination of decision algorithms for �rst-order theories
of interest such as the free theory of equality and linear arithmetic over inte-
gers and rationals. In some application domains, these tools are extended with
instantiation techniques to handle universally quanti�ed formulas.

In recent years, we worked on the improvement of our SMT solver, called
Alt-Ergo [3], in the context of the BWare ANR project [10]. BWare aims, among
other things, at integrating SMT solvers as back-ends of Atelier-B. This relies
on the Why3 [8] platform. Its main idea consists in translating Atelier-B proof
obligations into Why3's logical language, combining them with a model of the
B Set theory (also written in Why3's logical language) and feeding the result of
the combination into di�erent external solvers, among of which Alt-Ergo.

This paper presents our recent developments in Alt-Ergo that signi�cantly
improved its e�ectiveness in discharging POs coming from Atelier-B. Our en-
hancements include (1) new e�cient data structures that boost performances
of Alt-Ergo's core, (2) better heuristics for instantiating polymorphic quanti�ed
formulas coming from B model, and (3) a better interaction between the SAT
solver and the decision procedures components. We also introduced a new plugin
architecture to facilitate experiments with di�erent SAT engines and provided
a new experimental CDCL-based SAT solver. In addition, to be able to track
and identify �bottlenecks� in our prover, we implemented a pro�ling plugin that
allows us to observe the behavior of internal components of Alt-Ergo when a
formula requires a long time to be discharged, or makes the solver timeouts.

We evaluated our improvements on a benchmark of more than 10,000 POs
generated from four industrial B projects. The results are very promising and
show a signi�cant progression of current versions of Alt-Ergo compared to both
previous releases of our solver and to Atelier-B's automatic main prover.

In Section 2, we present Alt-Ergo and its applications. Section 3 explains
how B POs are enriched with a Set theory model and translated into Alt-Ergo.
Section 4 details our benchmarks' characteristics and compares them with our
existing test-suite. Section 5 describes some of our developments to improve
Alt-Ergo for B POs, and Section 6 presents an experimental evaluation of these
improvements. In Section 7, we conclude and discuss related and future works.

2



D
R

A
F

T
2 The Alt-Ergo SMT Solver

Alt-Ergo is an automatic solver of mathematical formulas designed for program
veri�cation. It is based on Satis�ability Modulo Theories (SMT). Solvers of this
family have made impressive advances and became very popular during the last
decade. They are now used in various domains such as hardware design, software
veri�cation and formal testing.

Alt-Ergo is used as a back-end of di�erent tools and in various settings, in
particular via the Why3 platform. For instance, the Frama-C suite relies on it
to prove POs generated from C code, and the SPARK toolset uses it to check
POs produced from Ada programs. Alt-Ergo is also used to prove POs issued
from cryptography protocols veri�cation and from the Cubicle model-checker.
Recently, we started to use it to discharge POs coming from Atelier-B.

The simpli�ed architecture of Alt-Ergo is shown in Figure 2. The SAT solver
interacts with the decision procedures to look for a model for the ground part of
the input formula. If a �x-point is reached and unsatis�ability is not deduced,
it asks the �Axioms Instances� part for some ground consequences of quanti�ed
formulas (axioms). Generated instances are added to the SAT's context and the
interaction with the �Decision Procedures� part continues. The latter compo-
nent provides a combination of decision algorithms for a collection of built-in
theories including the free theory of equality with uninterpreted symbols, linear
arithmetic over integers and rationals, fragments of non-linear arithmetic, and
enumerated and records datatypes.

type 'a set

logic add: 'a , 'a set → 'a set

logic mem: 'a , 'a set → prop

axiom mem_add:

∀ x,y: 'a. ∀ s: 'a set.

mem(x,add(y,s)) ↔
(x = y or mem(x,s))

logic a, b: int

logic s: int set

goal g: a = b+1 → mem(a-1,add(b,s))

Fig. 1: An example in Alt-Ergo's syntax Fig. 2: Alt-Ergo's simpli�ed architecture

Alt-Ergo's native input language is a polymorphic �rst-order logic à la ML

modulo theories, a very suitable language for expressing formulas generated in
the context of program veri�cation. For instance, the toy example shown in Fig-
ure 1 declares an abstract polymorphic type 'a set, some function and constant
symbols (add, mem, a, b and s), one axiom (mem_add) that speci�es the meaning
of membership over add, and a formula to be discharged (a goal) that involves
arithmetic and uninterpreted function symbols.

3



D
R

A
F

T
3 From B Proof Obligations to Alt-Ergo

One of the objectives of BWare is to connect additional automatic provers to
Atelier-B to increase its proofs automation rate and to lower the cost of manual
proofs. This goal is achieved via the translation scheme given in Figure 3:

Fig. 3: Translating B proof obligations to Alt-Ergo's native input language

1. First, the POs produced by Atelier-B are translated into Why3's logic us-
ing bpo2why [9]. The latter tool has been extended during the project to
cover a larger part of B constructs. A small PO and its corresponding Why3

translation are given in [9] (Fig. 2 and Fig. 4 respectively).
2. Datatypes and function symbols declarations, as well as the axioms of the

B Set theory, do not appear in the original POs because they are built-in
for Atelier-B's main prover. To make them explicit for Why3, a prelude that
contains these information is written and appended to every translated PO.
An overview of the content of this �le is given in [9] (Fig. 7).

3. At this point, Why3 can be used to produce POs for a wide range of solvers
in di�erent formats (TPTP, SMT2, Alt-Ergo's native input language, . . . ).

Note that, a new proof obligations generator that is able to directly output
POs in Why3's logic has been developed in Atelier-B during the project.

4 Benchmarks Characteristics

Quite at the beginning of the BWare project, we had a test-suite1 of 12,831 POs
obtained from four industrial B projects. The POs were previously discharged
automatically or interactively in Atelier-B. They were translated to Why3 using
bpo2why. Two benchmarks (called RCS3 and DAB) were provided by Mitsubishi

Electric R&D Centre Europe. They are generated from B implementations of
an automated teller machine and a software that controls a railway level cross-
ing system, respectively. Two additional benchmarks (called p4 and p9) were
provided by ClearSy, and were obfuscated.

Every PO is composed of three parts: the �rst one is a large set of declarations
and axioms (universally quanti�ed formulas). It results from the translation of
the B Set theory prelude to Alt-Ergo's syntax. The second part is made of huge
(in size) predicate de�nitions describing parts of the B state machines. It is part

1 A �rst release is available here: http://bware.lri.fr/index.php/Benchmarks

4

http://bware.lri.fr/index.php/Benchmarks


D
R

A
F

T
of the original B formula. The last part is the �goal� we would like to prove. It is
a ground formula involving the predicates of the second part. The concatenation
of the two �rst parts will be called �the context� of the PO.

A quick inspection of the POs shows that they are made of equalities over
uninterpreted function symbols and atoms involving enumerated data types. A
small portion of atoms contains arithmetic and records. Compared to our older
benchmarks, the average number of axioms, as well as the size of the POs are
much larger in this new test-suite, as summarized below:

VSTTE Why3 Hi-Lite RCS3 DAB p4 p9

number of POs 125 4490 15993 2259 860 9342 371
avg. # of axioms 32 57 115 395 303 304 332
avg. size (KB) 8 12 36 907 252 258 420

At the beginning of the project, we ran state-of-the-art SMT solvers that can
handle the POs of our test-suite. Those solvers have been running without any
particular options or con�gurations. We used a 64-bit machine with a quad-core
Intel Xeon processor at 3.2 GHz and 24 GB of memory. Time (resp. memory)
limit was set to 60 seconds (resp. 2 GB) per PO. The results are shown in the
table below, as well as the automation success rate of Atelier-B's main prover
(denoted B-PR) for these projects. Note that, for the sake of equity, B proof
obligations were �rst split to obtain one goal per �le, before they were given to
main prover.

prover version RCS3 DAB p4 p9

Alt-Ergo 0.95.2 2226 (98.7%) 822 (95.6%) 8402 (89.9%) 213 (57.4%)
Z3 4.3.1 2191 (97.1%) 716 (83.3%) 7974 (85.4%) 162 (43.7 %)
CVC3 2.4.1 2203 (97.6%) 684 (79.5%) 7981 (85.4%) 108 (29.1%)

B-PR 4.2 (90.1%) (95.7%) (83.0%) (96.2%)

The evaluation shows that it is not immediate to obtain a substantial gain of
performances by using SMT solvers to discharge B proof obligations. Without
a speci�c tuning for B, SMT solvers compete equally with Atelier-B's prover on
the test-suite. We describe in the next section the main improvements we made
in Alt-Ergo to increase its success rate on these benchmarks.

5 Tuning Alt-Ergo for B Proof Obligations

We now provide a non-exhaustive list of modi�cations we made in Alt-Ergo to
augment its proofs success rate on BWare POs. But, we will start by describing
our pro�ling plugin that allowed us to quickly localize sources of ine�ciency.

5.1 Spying the solver

During our investigations to improve Alt-Ergo, we had to instrument several parts
of its code to print some information and understand what is happening inside

5



D
R

A
F

T
it. We ended by writing a pro�ling plugin that records relevant data and prints
them in an appropriate way, with a negligible overhead when it is deactivated.
Currently, information are printed in �text mode� and refreshed periodically.

When pro�ling, the user can switch between four views. The �rst view shows
the progression of some global counters such as the current decision and instan-
tiation levels, the total number of decisions and instantiations, the number of
generated instances, the number of Boolean (resp. theories) simpli�cations and
con�icts, the number of case-splits, etc.

The second one is a �matrix view� where the lines contain around twenty of
the most used (time consuming) functions and the columns are labeled with the
most important modules of Alt-Ergo. In every cell, the accumulated time spent
in each function of every module is shown. This view allowed us to realize that,
contrary to what we thought at the beginning of the project, arithmetic reasoning
is very costly for some p4 proof obligations. In fact, arithmetic modules take more
than 80% of the solver's time on these POs. An enhancement of corresponding
algorithms increased both the success rate and the execution time of Alt-Ergo.

The third view prints the stack of currently activated modules and functions.
To di�erentiate successive calls to the same function, we associate a fresh stamp
to every new call. This allows us to detect when a function is slow or looping
thanks to the repetition of the same stamp ID after two successive prints.

Finally, the fourth view is dedicated to axioms instantiation. For every axiom,
this view shows: the number of generated, kept and ignored instances, the num-
ber of instances that participated in a con�ict, and the number of �consumed�
and �produced� ground terms by the instances. Actually, an axiom that produces
a huge number instances or terms may have a bad (i.e. too permissive) trigger,
so choosing another trigger or completely disabling the axiom may alleviate the
solver's context and permit to do the proof.

5.2 Improving internal data-structures

During our �rst investigations to improve Alt-Ergo, we noticed that the represen-
tation of literals and formulas were not optimal, and that some normalizations
were missing. This prevents the solver from making some straightforward sim-
pli�cations, from getting the best from hash-consing techniques, and from doing
some operations in constant time without allocating (e.g. computing the negation
of a formula). To �x these issues, we reimplemented the internal data-structures
for literals and formulas. In addition, we hash-consed internal data-structures of
the decision procedures. This enabled the use of hash-consed based comparison
to build sets and maps over these structures and induced an important speedup.

5.3 Improving the SAT solver

In general, SAT reasoning is cheaper than theories reasoning. So, to improve the
interaction between the SAT and the theories, we made some modi�cations to
delay calls to decision procedures as much as possible and to make all possible
deductions at SAT level �rst. This is done when assuming unit facts, deciding

6



D
R

A
F

T
a literal, or when performing Boolean constraints propagation modulo theories.
A similar distinction is also made inside decision procedures: reasoning with
equalities is, in general, much faster than processing inequalities.

In addition, we modi�ed Alt-Ergo's architecture to enable the use of di�erent
SAT solvers provided as plugins, implemented a new CDCL-based solver, and
enriched the default SAT solver with some modern decision heuristics.

5.4 Better axioms instantiation heuristics

During our investigations, we ran Alt-Ergo with pro�ling support on our POs
and noticed a large number of axioms instantiation, a high activity of the de-
cision procedures, and an important workload for the SAT engine. A further

Fig. 4: Interaction of di�erent components of Alt-Ergo on B proof obligations

investigation revealed that this is due to the hundreds of axioms and the huge
context that implies thousands of generated instances, as shown in Figure 4.

In order to limit the number of generated instances at each matching round,
we modi�ed Alt-Ergo to only consider terms that appear in the current active
branch (model) of the SAT engine when instantiating. We also added some
normalizations to detect and eliminate redundant (equivalent) instances.

Another improvement is related to E-matching technique: in SMT solvers,
matching process is performed modulo the set of known equalities. For instance,
if x is a variable, f(g(x)), f(g(a)), g(b) are terms, and g(a) = g(b) is a known
equality by the decision procedures, then E-matching a trigger 2 f(g(x)) against
f(g(a)) will produce two solutions σ1 = {x 7→ a} and σ2 = {x 7→ b}, while simple
syntactic matching would only generate σ1. Actually, the number of solutions for
the matching problem is directly related to the number of generated instances.
Consequently, we added the ability to disable the generation of new instances
modulo known ground equalities via a new option, called -no-Ematching. This
choice is justi�ed by the fact that, while E-matching is not really mandatory to
discharge more POs for BWare benchmarks, disabling this feature makes Alt-Ergo
regress on our older benchmarks coming from Why3 and SPARK.

5.5 Save (replay with) the context used for a proof

Another important feature we added in Alt-Ergo is the ability to identify and
save, for a discharged PO, a reasonably small over-approximation of the names of
axioms that are useful to do the proof. The overhead due to the activation of this

2 Triggers are terms with variables that prevent the instantiation of quanti�ed formulas
unless they �match� some ground terms present in the decision procedures.

7



D
R

A
F

T
feature (via option -save-used-context) is, in general, small compared to the
bene�ts: saved information can be used to quickly replay the proofs (with Alt-

Ergo via option -replay-used-context, or with another prover), as we demon-
strate it in the next section.

6 Experimental Evaluation

In order to measure the impact of our improvements on BWare's test-suite, we
considered two evaluation axes. For the �rst axis, we varied the time given to
the solver for each PO: we used small timeouts that are adequate for an online
integration (2 and 10 seconds per PO), and bigger timeouts, suitable for an
o�ine integration (60 and 600 seconds per PO). For the second axis, we varied
solver's options and resolution strategies:

1. the �rst strategy uses Alt-Ergo without particular options,
2. the second one uses the solver with the restricted options �-no-Ematching

-nb-triggers 1�: picking one trigger per axiom (default value is two) and
disabling matching modulo equality will restrict the number of generated
instances,

3. the third one is a portfolio approach that uses a dozen of con�gurations on
a PO as long as it is not proved. This strategy is rather intended to be used
o�ine, as timeout is set per con�guration. Used con�gurations are listed in
the �gure below:

01 | '-nb-triggers 1 -no-Ematching'

02 | '-nb-triggers 1'

03 | �

04 | '-no-tcp'

05 | '-no-theory'

06 | '-nb-triggers 10'

07 | '-greedy'

08 | '-sat-plugin satML-plugin.cmxs -nb-triggers 1 -no-Ematching'

09 | '-sat-plugin satML-plugin.cmxs -nb-triggers 1'

10 | '-sat-plugin satML-plugin.cmxs'

Basically, we restrict (e.g. -nb-triggers 1) or modify (e.g. -no-Ematching,
-nb-triggers 10) some solver's capabilities, or use alternative implementa-
tions of some components (e.g. -sat-plugin satML-plugin.cmxs) to hopefully
discharge a PO. Option -greedy enables the use of all the terms of the SAT
solver when instantiating instead of those appearing in the current model
only, option -no-tcp disables the simpli�cation of disjunctions in the SAT
modulo theories, while -no-theory completely disables theory reasoning.

For our experiments, we used the latest private release of Alt-Ergo (v. 1.10).
The results are reported in the tables below (D = default strategy, R = restricted
strategy, P = portfolio strategy, B = results of Atelier-B's main prover, and O =
results of Alt-Ergo v. 0.95.2).

8



D
R

A
F

T
We can draw many conclusions from these results:

� even with a time limit of 2 seconds, the default strategy of Alt-Ergo 1.10
solves more POs than version 0.95.2 (which was ran in default mode with a
time limit of 60 seconds),

� the restricted strategy is, in general, faster and solves more POs than the
default one (except for RCS3, and for DAB with a time limit of 600 seconds),

� whatever the chosen timeout for Alt-Ergo, the portfolio strategy is always
the fastest, and has the best resolution rate. This is as expected since the
�rst and the second strategies are just particular con�gurations of the third
one (in which timeout was set per con�guration),

� more generally, we made substantial progress for both resolution time and
the number of discharged POs compared to Alt-Ergo 0.95.2, in particular for
projects p4 and p9,

� Atelier-B's main prover is still better on p9 even if we compare it to portfolio
approach. The reason is that, contrary to p4 project that involves a lot
of arithmetic reasoning, a substantial part of p9 POs necessitates lemmas
superposition to be proven quickly. Unfortunately, E-matching is not suitable
for that, and superposition calculus is currently lacking in Alt-Ergo.

2

c. RCS3 DAB p4 p9

D 98.8%(2230/794s) 95.8%(824/ 138s) 94.7%(8849/ 1876s) 64.4%(239/ 126s)

R 97.8%(2206/780s) 98.0%(843/ 135s) 98.8%(9230/ 1880s) 66.6%(247/ 124s)

10
D 99.0%(2233/811s) 95.8%(824/ 138s) 97.7%(9124/ 2940s) 67.4%(250/ 183s)

R 97.8%(2207/783s) 98.0%(843/ 135s) 99.3%(9273/ 2126s) 73.6%(273/ 261s)

60
D 99.0%(2233/811s) 97.0%(834/ 518s) 98.3%(9179/ 4480s) 71.2%(264/ 691s)

R 97.8%(2207/782s) 98.0%(843/ 135s) 99.3%(9274/ 2158s) 77.9%(289/ 547s)

600
D 99.0%(2233/811s) 99.0%(851/1789s) 98.8%(9231/13375s) 72.2%(268/1554s)

R 97.8%(2207/782s) 98.0%(843/ 135s) 99.3%(9278/ 2542s) 82.8%(307/3064s)

60
B 90.1% 95.7% 83.0% 96.2%

O 98.7% 95.6% 89.9% 57.4%

We also notice for DAB project that increasing timeout of the portfolio ap-
proach does not allow to discharge more POs. This may be due to two reasons:
either the triggers computed for the remaining formulas are not suitable to do
the proofs, or the proofs require superposition calculus.

2
c. RCS3 DAB p4 p9

P 99.2%(2237/795s) 99.2%(853/ 138s) 99.4%(9289/ 1968s) 71.2%(264/ 142s)

10 P 99.2%(2237/795s) 99.2%(853/ 138s) 99.5%(9292/ 2204s) 81.7%(303/ 353s)

60 P 99.3%(2240/844s) 99.2%(853/ 138s) 99.5%(9295/ 2272s) 86.2%(320/1007s)

600 P 99.3%(2240/844s) 99.2%(853/ 138s) 99.6%(9303/ 4729s) 90.8%(337/3402s)

9



D
R

A
F

T
We made a second experiment to measure the impact of saving the �names

of axioms� that have been used to discharge a PO, and of replaying the proof
with the pruned context. For that, we used the default con�guration of Alt-

Ergo 1.10 and a time limit of 600 seconds. The results are reported in the table
below. We notice that we have a small overhead when option -save-used-context

is activated, compared to the results we got with the default strategy, and that
around twenty POs are not proved anymore. However, thanks to the information
saved when this option is activated, all proofs replay succeeded quite faster.

RCS3 DAB p4 p9

-save 99.0%(2233/821s) 99.0%(851/3015s) 98.7%(9216/15454s) 72.0%(267/1250s)

-replay 100% (776 s) 100% (124 s) 100% (1742 s) 100% (101 s)

7 Conclusion and Future Works

This paper describes our improvements in the Alt-Ergo SMT solver to increase
its proofs success rate on formulas coming from the Atelier-B framework. Our
experimental results show a substantial progression of Alt-Ergo 1.10 compared
to older versions and to Atelier-B's main prover. It turns out that B proof obli-
gations have some speci�cities that should be taken into account to obtain a
good success rate. Note that, the integration of SMT solvers in the Rodin [11]
platform to discharge proof obligations coming from Event-B [1] has already
been investigated [7]. However, the translation scheme that has been employed
is quite di�erent from BWare's (static expansion of Set theory constructs before
generating a PO for an SMT solver). It would be interesting to investigate the
use of BWare's translation technique within Rodin. This could be achieved by
adapting the investigations of [2] to use BWare axiomatization.

In the near future, we plan to investigate the integration of built-in support
for a fragment of the B Set theory in Alt-Ergo via the extension of our rewriting-
based frameworks AC(X) [5] and CC(X) [6]. This would improve resolution time
and o�er some nice completeness properties on this fragment. The extension of
Alt-Ergo with superposition calculus would also increase proofs success rate. In
addition, we identi�ed some components of our solver that necessitate further
improvements (e.g. triggers inference module). Other possible lines of work in-
clude the use of benchmarks coming directly from Atelier-B's new POs generator,
and the extension of the B Set theory prelude3. Yet, a new project containing
60,000 POs has been recently translated to Why3's logic. It constitutes another
interesting challenge for Alt-Ergo.

Last, but not least, a previous release of Alt-Ergo (version 0.94) has already
been quali�ed for a usage in avionic area (DO-178B). It would be worth consid-
ering the ability to qualify a new version for a usage in the railway domain.

3 The prelude is still under development, and some axioms may be missing to discharge
a PO, or may be written in an �unsuitable� way for the solvers.

10



D
R

A
F

T
References

1. J.-R. Abrial. The B-book - assigning programs to meanings. Cambridge University
Press, 2005.

2. D. Adjepon-Yamoah, A. Romanovsky, and A. Iliasov. A reactive architecture for
cloud-based system engineering. In Proceedings of the 2015 International Confer-

ence on Software and System Process, ICSSP 2015, pages 77�81, New York, NY,
USA, 2015. ACM.

3. F. Bobot, S. Conchon, E. Contejean, M. Iguernlala, S. Lescuyer, and A. Mebsout.
Alt-Ergo, version 0.99.1. CNRS, Inria, Université Paris-Sud 11, and OCamlPro,
Dec. 2014. http://alt-ergo.lri.fr/, http://alt-ergo.ocamlpro.com/.

4. ClearSy System Engineering. Atelier B User Manual, version 4.0. http://tools.
clearsy.com/wp-content/uploads/sites/8/resources/User_uk.pdf.

5. S. Conchon, E. Contejean, and M. Iguernelala. Canonized Rewriting and Ground
AC Completion Modulo Shostak Theories : Design and Implementation. Logical

Methods in Computer Science, 8(3), 2012.
6. S. Conchon, E. Contejean, J. Kanig, and S. Lescuyer. CC(X): Semantic Combina-

tion of Congruence Closure with Solvable Theories. Electronic Notes in Theoretical

Computer Science, 198(2):51�69, May 2008.
7. D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin. Integrating SMT solvers in

rodin. Sci. Comput. Program., 94:130�143, 2014.
8. J.-C. Filliâtre and A. Paskevich. Why3 - Where Programs Meet Provers. In ESOP,

volume 7792 of Lecture Notes in Computer Science, pages 125�128. Springer, 2013.
9. D. Mentré, C. Marché, J.-C. Filliâtre, and M. Asuka. Discharging Proof Obligations

from Atelier B Using Multiple Automated Provers. In ABZ, volume 7316 of Lecture
Notes in Computer Science, pages 238�251. Springer, 2012.

10. The BWare Project, 2012. http://bware.lri.fr/.
11. L. Voisin and J.-R. Abrial. The Rodin Platform Has Turned Ten. In Y. Ait Ameur

and K.-D. Schewe, editors, Abstract State Machines, Alloy, B, TLA, VDM, and Z,
volume 8477 of LNCS, pages 1�8. Springer Berlin Heidelberg, 2014.

11

http://alt-ergo.lri.fr/
http://alt-ergo.ocamlpro.com/
http://tools.clearsy.com/wp-content/uploads/sites/8/resources/User_uk.pdf
http://tools.clearsy.com/wp-content/uploads/sites/8/resources/User_uk.pdf
http://bware.lri.fr/

